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Preface and Warning

These notes, which form the first chapter of a forthcoming book, are intended to serve as lecture

notes on the topic of large deviations and applications for students whose background and interests

are in applications which involve finite dimensional spaces. Although narrow in their scope, these

notes present a good deal of the methods available for more general situations. A glaring omission

is the method of sub-additivity, which will be discussed in another chapter in the book. Another

deficiency of these notes is the sketchy bibliography and historical. We hope to correct this in the

book.

The funny looking ?? appearing in various places mean references to later chapters. Please

disregard those.
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Chapter 1

Introduction

1.1 The Large Deviations Principle

A large deviations principle characterizes the limiting behavior (as E - 0) of a family of probability

measures ,t on (X, Bx) in terms of a rate function. This characterization is via 'tight' asymptotic

upper and lower exponential bounds on the values that p/ assigns to close and open subsets of X

(respectively). For that purpose X should be a topological space so that open and closed subsets

of X are well defined concepts and as usual only measurable sets (i.e., elements of Bx, the Borel

sigma field on X) are of interest.

Definitions: A rate function I is any mapping I: X -- [0, oo] such that for any a E [0, oo) the

level set TI(a) ({x : I(x) < a} is a closed subset of X. A good rate function is a rate function

for which all the level sets Tr(a) are compact subsets of X.

Alternatively, a rate function is any non-negative, lower semicontinuous function on X (for the

definitions and a proof of this fact see Appendix ??). Throughout, let DI denote the set of points

in X of finite rate, namely VDI A { : I(x) < co}.

Definition: We say that /, satisfies the large deviations principle with rate function I if,

for all r E Bx,

- inf I(x) < lim inf E log p (r) < lim sup elog p (r) < - inf (x) (1.1.1)
zEro --0 !--0 zEF

where r is the closure of F, r° is the interior of r and the infimum of I over an empty set is
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interpreted throughout as oo.

Corollary 1.1.1 When fLe satisfies a large deviations principle with rate function I and r E ]x

is such that

inf I(z) = inf I() Ir(1.1.2)

then

lim logJ (r) = -Ir (1.1.3)

Remark: When I is a good rate function and r n DI is non-empty then there exists at least one

point x* E F where infrEFI(x) is achieved.

A set F which satisfies (1.1.2) is called an I Continuity Set. In general, a large deviations

principle implies a precise limit as in (1.1.3) only for I continuity sets.

In particular, points are typically not open subsets of X so a large deviations principle does

not result with an asymptotic exponential estimate on the probability that /u assigns to each point

in X. Better results may well be derived on a case by case basis for specific families of measures

ke and particular sets. While such results do not fall within our definition of a large deviations

principle few illustrative examples are included in this book (see Sections 2.1,2.6,2.10).

An alternative formulation of the large deviations principle is as follows:

(a). For any closed set F E /x,

lim sup Elog /u(F) < - inf I(x) (1.1.4)
¢--.0O - - xEF

(b). For any open set G E Sx,

lim inf E log y/(G) > - inf I(x) (1.1.5)C---0 -- xEG

The inequality (1.1.4) is also called the large deviations upper bound while (1.1.5) is called the

large deviations lower bound. Thus, the large deviations principle corresponds to the scenario in

which both bounds hold with the same rate function.

A few observations are now in place. First, observe that since (,¥(X) = 1 for any e it is necessary

that infxEx I(x) = 0 for the upper bound to hold (and when I is a good rate function then there
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exists at least one point x in which I(x) = 0). Next. observe that the upper bound trivially holds

whenever inf"eFI(x) = 0 while the lower bound trivially holds whenever infTEG I(z) = oo. This

leads to another alternative formulation of the large deviations principle which is useful when trying

to prove such a principle.

(a). For any closed set F E Sx contained in the complement of Ti(a),

limsup elog/.L(F) < -(1.1.6)
C-0

(b). For any x E Di and any open neighborhood G E Bx of x in X,

liminf elog L,(G) > -1(x) (1.1.7)

The inequality (1.1.7) reveals the local nature of the lower bound which should only be proved for

"small open sets". Moreover, the following indicates that the upper bound may be proved first for

an approximate I functional:

Definition: For any 6 > 0 let I1(x) = I(x) - 6 when x E VDI and I6 (x) _ { when x E D2I.

Since for any set F

lim inf f[(x) = inf I(x) , (1.1.8)
5-O0 EF xEF

it suffices to prove that for any 6 > 0 and for any closed set F

limsup ElogjL,(F) < - inf I 6(x) (1.1.9)
!--0O xEF

in order to conclude that the upper bound (1.1.4) holds.

Actually, a common technique for proving the existence of a large deviations principle is by

implicitly defining

I(x) = sup CA (1.1.10)
{AECO°:EA}

where

CA - lim inf Elog J(A), (1.1.11)

and C° C Bx is any basis for the topology of X (namely, any open set G is the union of sets from

C°).
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This definition results with a rate function f for which the lower bound (1.1.5) holds. Moreover,

when limbo Elog Lj(A) ezists for any A4 E C', then the upper bound (1.1.4) also holds for any

compact F E Bx (these statements are proved in Section ??).

This approach in which the upper bound is first proved directly for compact sets and then its

validity extended to all closed sets serves as a motivation for the following definition.

Definition: A sequence of probability measures /, satisfies weakly the large deviations principle

with rate function I if the upper bound (1.1.4) holds for F compact and the lower bound (1.1.5)

holds.

The following auxiliary exponential tightness property suffices for extending the weak large

deviations principle to a full large deviations principle with a good rate function (this is shown in

the sequel).

Definition: A family of measures tpl is exponentially tight if for any a < oo there exists a

compact set AI, E B1 , such that

lim sup Elog tL(IfK) < - (1.1.12)
C-o

where KI denotes the complement of the set Ia,.

Remark: The measures /, may satisfy a large deviations principle with a good rate function

without being exponentially tight. Beware of this common logical mistake.

The exponential tightness (and the alternative statement of the upper bound (1.1.9) are applied

in the following lemma for strengthening a weak large deviations principle.

Lemma 1.1.1 Let JLf be an exponentially tight family of probability measures.

(a). If the upper bound (1.1.4) holds for all compact sets then it also holds for all closed sets.

(b). If the lower bound (1.1.5) holds for all open sets then I(.) is a good rate function.

Thus, when an exponentially tight family of measures satisfies weakly the large deviations principle

with a rate function I(-) then I is a good rate function and a full large deviations principle holds.

Proof: (a). Consider an arbitrary closed set F. All we need is to establish (1.1.6) whenever

F C IQj(a)C. Fix any such a < oo. Clearly,

r (F) I< t,(F n A>.) + i,(K),



where K, is the compact set in (1.1.12). Part (a) of the lemma now follows by the inequality

(1.1.12) and the upper bound (1.1.4) for the compact set F n IK', (note that Fn iK, C II(a)c, so

infEFnK, I(x) > a).

(b). Applying the lower bound (1.1.5) to the open set fc, one concludes by (1.1.12) that infzeK/ I() >

a. Therefore, 1i(a) C Kii,, yielding the compactness of the closed level set Ji(a). As this argument

holds for any a < oo, it follows that I(.) is a good rate function. C

A countable family of measures y,~ is considered in many cases (for example when /l, is the law

governing the empirical mean of n random variables). Then, a large deviations principle corresponds

to the statement

- inf I(x) < liminf a,log p, (r) < lim sup a, logI, (F) < - inf I(x), (1.1.13)
zEro n-00 n--Er

for some sequence an - 0. Note that here a, replaces e of (1.1.1) and similarly the statements

(1.1.4)-(1.1.7) may be appropriately modified.

1.2 Major large deviations techniques

The major disadvantage of the very general approach outlined above is that it does not really

reveal what the rate function values are. However. since the rate function associated with a large

deviations principle is, under mild conditions, unique (as proved in Section ??) the following two

step method is quite useful:

(a). Prove the existence of a large deviations principle.

(b). Verify certain properties of the rate function (typically convexity and/or smoothness) and

from them deduce a more convenient (explicit) characterization of this function.

Indeed this method prevails to a certain degree throughout Chapters ??-?? of this book.

Nevertheless, when X is a subset of a finite dimensional vector space (specifically when X C IEd

for some d < oo) then one can typically prove directly the existence of a large deviations principle

with an explicit rate function. Chapter 2 of this book which is dedicated to this class of problems

serves at least three purposes:
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(a). To illustrate the sharpest possible resuits anld emphasize both the reason for the existence of

a large deviations principle and the types of rate functions one expects to find.

(b). To demonstrate the different methods for proving explicit large deviations statements in

simple scenarios when one's eyesight is not yet obscured by various technical details.

(c). To present an important class of interesting results and their applications while requiring

relatively little mathematical background.
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Chapter 2

Large Deviations principles for finite

dimensional spaces

2.1 Combinatorial Techniques for finite alphabet

Throughout this section all random variables assume values in the finite set = {al, a 2, ... , ajl} (IE

is also sometimes called the underlying alphabet). Combinatorial methods are then applicable for

deriving large deviations principles for empirical measures (see Sections 2.1.1 and 2.1.3 below) and

for empirical means (see Section 2.1.2 below). While the scope of these methods is limited to finite

alphabets, they illustrate the results one can hope to (and should indeed) derive for more abstract

alphabets. Some of these results are actually direct consequences of the large deviations principles

derived below via the combinatorial method. For example, in Sections ?? and ?? Theorems 2.1.1

and 2.1.3 are proved for a rather abstract alphabet E (specifically, for any Hausdorff topological

space E). The combinatorial methods. unlike all other approaches for deriving large deviations

principles, are based upon point estimates. For example they bound the probabilities associated

with each possible outcome of the empirical measure (also denoted as type, see the definition below).

This turns out to be very useful for some statistical applications (an example is presented in Section

2.6).
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2.1.1 The method of types and Sanov's theorem

Let X 1,X 2 ... ,X,X be a sequence of random variables (r.v.) which are independent, identically

distributed (i.i.d.) according to the law A E AIl(E). Throughout, Mll(S) denotes the space of all

probability measures (laws) on the alphabet S. Typically we shall specify the topology with which

M1l(S) is equipped. However, recall that here S is a finite set, so Mi(S) is identified with the

standard probability simplex in IREl, i.e, the set of all real valued vectors with I1I non-negative

components which sum to 1, and open sets in Mi(ES) are induced by open sets in IRII,.

Let S, denote the support of the law is, i.e., the set EA, - {ai: ' (ai) > 0}. In general, EA may

be a strict subset of E (i.e., p may assign zero probability to some of the symbols in E). However,

when considering one underlying measure At we may without loss of generality (w.l.o.g.) reduce S

to E, by ignoring all symbols which appear with zero probability. This indeed is implicitly assumed

throughout this Section (in Section 2.6 below we encounter a scenario where we have to keep track

of various support sets of the form of S,).

Definition 2.1.1 The type L x of a sequence x = {xl,...,x,} is the empirical measure (law)

associated with this sequence. Specifically, Lx = {Ln(al),..., LXl(all) is an element of AM1 (S),

where

n.Lx(ai) = E lx,=ai =-,V(ajlx), i= 1 ... Iz[ (2.1.1)
j=1

Let 4,n denote the set of all possible types of sequences of length n. Thus,

, = { : V = Lx for some x} C RIE lI . Note that the random empirical measure LX associated

with the sequence X {X1, .... Y,n} must be an element of the set n,.

The usefulness of the notion of types for finite alphabets as well as the reason why it is not

readily extended to more general alphabets are due to the following 'volume' and 'approximation

distance' estimates:

Lemma 2.1.1 (a). 1Cnl < (n + 1) l I

(b). For any probability vector v E l ( )

dv(v,,C,4) = inf dv(v,v') < 'E (2.1.2)v'EC, 2n '



where dr(v, v')- supc[v(.4) - v'(.-l)] is the variational distance between the measures v

and v'.

Proof: Note that any compont of thpe vector Lx belongs to the set { ... , n} whose cardinality1

(size) is (n + 1). Part (a) of the lemma follows since the vector Lx is specified by I1l such quantities

each of which assumes at most (n + 1) distinct values.

To prove part (b) observe that ,n indeed contains all probability vectors which are composed

of C12 elements from the set {;, ;,...,n }. Thus, for any vector v E Mll(E) there exists a vector

v, E e n with Iv(ai) - v'(ai)l < 1 for i = 1,..... El. The bound of (2.1.2) now follows since for any

discrete alphabet

C

Remarks:

1. Actually, since Lx is a probability vector, at most EIE - 1 such quantities should be specified

and so 1,n1 < (n + 1)ll-'.

2. Lemma 2.1.1 states that the volume of Cn, the support of the random empirical measures LX,

grows polynomially in n and further that for large enough n, the set L, approximates uniformly

and arbitrarily well (in the sense of variational distance) any measure in Mfl(E). Both properties

are invalid when IZ1 = oo.

Definition 2.1.2 The type (composition) class T(v) of a probability law v E L, is the set

T(v) = (x E n': L· = v}.

Outcomes x in the same type class are equally likely when X 1,..., X, are i.i.d. random variables.

This is part of the first among the three lemmas in the sequel which yield a strong prelude to

large deviations results by estimating the exponential growth of each type class and the precise

probability of any specific outcome from a given type class. The following definitions are useful for

that purpose:

Definitions:
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(1). The entropy of a probability vector v is 11(v) - -t (ai) log v(ai), where 0logO = 0

throughout.

(2). The (relative) entropy of a probability vector v relative to z is

H(v 1) _ v(ai) log
ai Er~ p(ai) 

when E, C 'S, (in which case H(vIL) < oo). Otherwise H(vli) A oo (whenever v(ai) > 0

while p(ai) = 0 for some ai E ,).

Remark: Note that H(.-lp) is a rate function. Indeed, the set M 1(E,) is a closed subset of M1 (E) in

which H(.l1t) is a continuous function (note that the function -z log z is continuous on [0,1]), while

H(.j1[) = oa outside :ll(E,,). Finally, the non-negativity of H(.lt) follows by Jensen's inequality.

Lemma 2.1.2 If x E T(v) for v E IE, then

Prob,({Xl,.... X,} = )= e - n(H ( -)+ H( 'l g) ] (2.1.3)

where Prob, corresponds to the probability law ,uZ + associated with an infinite sequence of random

variables {Xj} which are independent and identically distributed according to ju E M1(E).

Proof: Clearly (2.1.3) holds when H(vl{) = -c as the random empirical measure LX concentrates

on types v E Ln for which , C C , (i.e, H(vIpL) < oc). We may thus assume that H(vIjl) < oc

and E, C EA.

Since Lx = v and H(v) + H(vlL) = - Il v(a-) log (ai) it follows that

Prob({X1 , .. .,Xn} = x)= e -IL(ai)JV(a ' l x) = 1-[ j(aUi) "( ) =
- e-'[H(v)+H("iI ) (2.1.4)

i=1 i=l

In particular, since H(/jtu) = 0, when ,u E Ln and x E T(/j) then

Prob({X1 ,..., - - -, Xn} = x) = e- nH() . (2.1.5)

Lemma 2.1.3 For any v E n,, (n + 1)-IlienH(W) < IT(v)l < enH(v)
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Remark: Since IT(v) = nv(a),.., nv(al) ,one might get a good estimate of IT(v)l by

applying Stirling's approximation (see [12], pg 48). We take here a somewhat different route, of a

more information theoretic flavor.

Proof:Any type class has probability at most one and all its members are of equal probability.

Therefore, for any v E L,, by (2.1.5),

1 > Prob,(L X = v) = Prob,(X E T(v)) = e-nH(v)T(v)l (2.1.6)

and the upper bound on IT(v)l follows. The lower bound follows from the inequality (which is

proved below)

Prob,(Lx = v) > Prob,(LX = v'), v', v E 4C, (2.1.7)

as thus

1 = E Prob,(LX = ') <_ 14 Prob,(LX = V) = ICnle -nH(v) IT(v)l
v/'ELn

while 4,1n < (n + 1)c1 by Lemma 2.1.1.

It suffices to prove the inequality (2.1.7) for v' E Cn such that E,I C CE (as otherwise

Prob,(LX = v') = 0). Thus, without loss of generality one may assume that = E,,. Now,

consider the ratio

n 1E1

Prob,( r= - v) nv(al).. n(al vrI (ai)nv(a')

Prob,(LX = v') / n fltI (ai)nV'(ai)

nv'(al). .. nv'(aljl ) a

Irl

= nv ( n'( aij) ) ! v(aj )n-(ai ) -n-'t(ai) . (2.1.8)
I=, (nv(ai)-!

This last expression is a product of terms of the form ) . By induction m. > I(m-') for any

m,l E Z + , and thus (2.1.8) yields

Prob,(Lx = [) ] _

Pr°b(LX -v) > I n''(a')-nv(a) = n i 4 lZ v' (a)-Zl "(ai)] = 1

Prob,(Lx = v') -i=9
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Lemma 2.1.4 (Large deviations probabilities) For any v E L,

(n + 1)- tE l e- nH(" ') < Prob,(L X = v) < e -nH(I) (2.1.10)

Proof: By Lemma 2.1.2

Prob,(LX = L) = IT(v)l Probt,({Xl,...,X,} =x> L X = v)

= IT(v)l e-n[H(/)+H(VIM)] (2.1.11)

The proof is now completed by applying Lemma 2.1.3. -]

Combining Lemma 2.1.1 and Lemma 2.1.4 we prove Sanov's theorem for the finite alphabet E,

our first large deviations principle. Later on. in Sections ?? and ?? we shall extend this result

to an appropriate class of topological spaces fl(,) covering in particular the important case of

E = IRd

Sanov's theorem deals with the sequence of laws governing the random empirical measure LX

which is a random element of the probability simplex MIl() when the underlying independent

random variables X 1,..., -, are identically distributed according to the law jL.

Theorem 2.1.1 (Sanov's theorem) For any set r of probability vectors in iVII(E) C IRIO l

-inf H(vI) < liminf 1logProb (LX E F) < limsup -logProb,(LX E F) < - inf H(v1p) ,
zEr o n-oo nf n-oo tLn er

(2.1.12)

where 1O is the interior of r (as a set in A 1(7) C IRlli).

Remark: Comparing (2.1.12) and the definition (1.1.13) we conclude that Sanov's theorem states

that the family of laws Prob,(L X E -) satisfies a large deviations principle with the rate function

H(.Ij/). Further, in the particular case of finite alphabet E covered here the upper bound holds for

any set r (i.e., there is no need for a closure operation). For few other improvements over (2.1.12)

which are specific to this case see exercises 2.1.1. 2.1.2 and 2.1.3. Note however that there are closed

sets for which the upper and lower bounds of (2.1.12) are far apart (see exercise 2.1.5). Moreover,

there are closed sets for which the limit of 1 log Prob,(LX E r) does not exist at all (see exercise

2.1.4).
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Proof: We begin by deducing from Lemma 2.1.4 upper and lower bounds for any finite n. The

upper bound

Prob,(LX E F) = E Prob,,(L x = v) _< e-"nH(vI) < Ir n CnIen infrnIn H(vlt,)
IE rnC, vLErn£n

< (n + 1 )II e-n inf,Ern,, H(vlu) (2.1.13)

follows by the union of events bound and the upper bound of Lemma 2.1.4. The accompanying

lower bound is

Prob,(L X G F) = Prob,(LX = v) > Z (n + 1)- I l: e-nH(vlj) >
vErnC, vErn,,

> (n + 1)-IEI e-n inf,,Ern,, H(vliA) (2.1.14)

As limn_, log(n + 1)tI l = 0 the normalized logarithmic limits of (2.1.13) and (2.1.14) yield

limsup -log Prob,(LX E F) -liminf { inf H(vl/)} (2.1.15)
n--oo n n--oo vErnC,,

and

liminf- log Prob~,(L X E F) = -limsup { inf H(vlp)}. (2.1.16)
n---.oon n ncc¢ uErnCn

The upper bound of (2.1.12) follows since r n ,n C r for any n.

Turning now to the lower bound of (2.1.12), fix an arbitrary point v E F0 . The set

BV6 L {v' dv(v,v') < 61 must be contained in r for all 5 > 0 sufficiently small (as v is in the

interior of r). Thus, by part (b) of Lemma 2.1.1 (see (2.1.2)) there exists a sequence v, E r n n,

such that v, - v as n -- oo. As already observed, E may be identified with E, without loss of

generality. Then H(-lIu) is a continuous function and therefore,

- lim sup inf H(v'/1i) > - lim H(vjnlj) = -H(v/Ip). (2.1.17)
n--oo 'ErnC,, n-OO

The lower bound of (2.1.12) follows by taking the infimum over v E rF in (2.1.17). 0-

Exercises:

2.1.1 Prove that for any open set r

- lim { inf H(vlj)} = rim - log Prob, (L X E r) inf H(vp ) -Ir. (2.1.18)
n-.oo LFrn£,., n-o-, n vEr16
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2.1.2 (a). Extend the conclusions of exercise 2.1.1 to any set F C AI1(,) which is contained

in the closure of its interior.

(b). Prove that for any such set Ir < co and Ir = H(v'*lu) for some v' E 'o.

Hint: Use the continuity of H(-.IL) on 'II1(,s) and the compactness of this set.

2.1.3 Assume that r is a convex subset of iMi1(E,,) of non-empty interior. Prove that all the

conclusions of. exercise 2.1.2 apply. Moreover, prove that here the point v ' E Fo for which

Ir = H(v*I'L) is unique.

Hint: Show that for any v E r and any v' E Fo the line segment connecting v and V' is part of

Fo. Deduce that r C Fo which is a closed convex set. Then prove that H(.IjL) is a strictly convex

function in AMl(C, ).

2.1.4 Find a closed set r for which both of the limits in (2.1.18) do not exist.

Hint: Any set F = {v} consisting of one probability vector v E M1(E5,) which also belongs to n,

(for some n) shall do.

2.1.5 Find a closed set r such that r = Fo and infEr H(Ivu) < oc while infEro H(v{i/) = Co.

Hint: For this construction you need 2E L s. Try r = {v : v(a 2) + /a() > 1} and /(al) = O

(while IdE = 3).

2.1.2 Cramer's theorem for finite alphabets in IR1

As an application of Sanov's theorem, we bring a proof of a version of Cramer's theorem about the

large deviations of the empirical mean of i.i.d random variables. For that purpose we further assume

throughout this section that E = E, is a finite subset of IR1 and let S,- 1 Xj denote the

resulting sequence of empirical means (where Xj E E as in Section 2.1.1 above). Cramer's theorem

deals with the large deviations principle satisfied by the family of laws governing the real valued

random variables S,. Sections 2.2 and 2.3 are devoted to successive generalizations of this result

to E = IR' (Section 2.2) and to weakly dependent random vectors in IRd (Section 2.3).

Note that in the case considered here (I l < c0), the random variables S, assume values in the

compact interval KI _ [minll, {ai, maxl} l {aj}j. Moreover,
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--n = l LX(a)a1 =< LX a > where a = (al,..., asl). Therefore.

S¢,E7 A X LX E v: <v,a>E A} r (2.1.19)

for any A C IK and any integer n. Thus, the following version of Cramer's theorem is a direct

consequence of Theorem 2.1.1.

Theorem 2.1.2 (Cramer's theorem for finite subsets of IRl )

(a). For any set A C K

- inf I(x) < liminf -log Prob,(Sn E A) < lim sup -log Prob,(Sn E A) < - inf I(x), (2.1.20)
XEA o

n-0oo n n-co n xEA

where A ° is the interior of A (as a set in IR1) and I(x) =inf<v,a>=, H (vjlL).

(b). The continuous rate function I(x) (for . E K) also satisfies

(zx) = sup {Ax - A(A)} (2.1.21)
.\EIR'

where

A(A) = log ,l(ai)e\ai
i=1

Remark: Since the rate function is continuous (on K) it follows from (2.1.20) that whenever

A C A° C K

lim -log Prob,(S, E .4) = -inf I(x).
-- oo n xEA

Proof:

(a). The bounds of (2.1.20) are simply the bounds of (2.1.12) for the set r defined in (2.1.19) (note

that {v :< v,a >E A° } C r0).

(b). Observe that by Jensen's inequality

P Aaj P / (ai)e·ai
A(X) = log y )(ai)eXa' > v(ai)log - A < v,a > -H(vli), (2.1.22)

og i=l-1 v(ai)

for any v E Ml(E) and any A E IR', with equality for v,\(ai) - y(ai)eAai- ^ ( ) .

The function A(A) is differentiable and strictly convex, implying that A'(A) is strictly increasing.

Moreover, IK = [infx A'(A), sup, A'(A)]. Therefore, for any x E KI° there exists a unique A(') E ]R 1

18



such that z - A'(A(Z )) = 0. As < v(w), a >= A'(A(z )) = :. the application of (2.1.22) for A(x) yields

I(z) = inf_ H(vip) = H(vx(),,,) = A(z)x - A(A(`)) = sup {Ax - A(A)}, (2.1.23)
< ,a>=x XE '1

i.e., (2.1.21) holds for any x E IK°. The continuity of I(x) (for x E K), which is a direct consequence

of the continuity of H(.jp), implies that (2.1.21) holds also at the boundaries of K. 0

It is interesting to note that by deriving Cramer's theorem from Sanov's theorem, we have

followed a pattern which will be useful in the sequel and which is referred to as the 'contraction

principle' (cf Section ??). Indeed, based on large deviations result in the "big" space (M 1(E)), we

obtained a large deviations result on a "smaller" space which is obtained from the original space by

a continuous map ("contraction"). In the particular case in hand, however, an alternative proof of

the finite alphabet Sanov's theorem follows directly from Cramer's theorem in IRI.l : and is presented

in section 2.3.

Exercises:

2.1.6 Construct an example for which the limit of 1 log Prob,(Sf = x) as n - co does not exist.

Hint: Note that for IZI = 2 the empirical mean (S,) uniquely determines the empirical measure

(LX). Relay on this observation and exercise 2.1.4 to construct the desired example.

2.1.7 (a). Prove that I(x) = 0 if and only if x = 7. - E,(X 1 ). Explain why this should have been

anticipated in view of the weak law of large numbers (which states that S, -i 7 in probability, as

,n --, C).

(b). Check that H(vl/L) = 0 if and only if v = Lt and interpret this result.

2.1.8 Guess the value of lim,-_ Prob,(Xl = a-ilS, > q) for 7 < q E K ° and try to justify your

guess (at least heuristically).

2.1.9 Extend Theorem 2.1.2 to E which is a finite subset of IRd. In particular, determine the

shape of the set K and find the appropriate extension of the formula (2.1.21).

2.1.3 Large deviations for sampling without replacements

The method of types is useful also for studying the large deviations of the empirical measure of a

sequence of dependent random variables. For example, consider the following set up of sampling
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without replacements which is often encountered in statistical problems. Out of an initial deter-

ministic pool of M items x = (x,... xrM), an n-tuple X (xi,, .*,zi ) is sampled without

replacement, namely, ii 0 i2 0 i3 ~ ... . in and all ( ) choices ofil i 2 .... in {1,. .,M}

are equally likely.

Suppose now that *x(f),..., (M) are elements of the same finite set v = {al,..., aleI} and that

as M - co the deterministic relative frequency vectors LX = {Lx(a,),... L(a 1E;)} converge

(point wise) to AL E Ml(E). Recall that

-1 A 1M
L M(a) = Ma x), i = 1,, (2.1.24)

j=1

Suppose further that X is a random vector obtained by the sampling without replacement of n

out of M elements as described above. We investigate the large deviations principle governing the

random empirical measure LX associated with the vector X. Note that L X belongs to the set n,

whose size grows polynomially in n (see Lemma 2.1.1). In particular we aim at deriving the analog

of Theorem 2.1.1 when limn_-,.o (i) = '3 E (0., 1). For that purpose define the following candidate

rate function

H(ILp) + -H ( - ) if Hi > 3vi for all i
I,.(V) l + (2.1.25)

oc otherwise

By basic combinatorics and an application of Lemma 2.1.3 we obtain the following estimates of

large deviations probabilities for L X .

Lemma 2.1.5 For any probability vector v E LCn

(a)-. If I-,Lx (V) < X then

-log Prob(LX ) ILX (v= <2( + 1) (log(M + 1) (2.1.26)

(b). If I ,Lx (V) = 00 then

Prob(LX = v) = 0 (2.1.27)

Proof: (a). In the sampling without replacement procedure the probability of the event {LX = v}

for v E L, is exactly the number of n-tuples ii i2 --. in resulting with type v divided by the
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overall number of n-tuples, that is

Prob(LX = ) = i V n ,(a) (2.1.28)

An application of Lemma 2.1.3 for J1[ = 2 (where T(v)l = ( ) when v(al) = -, (a 2) = -- ),k n n
results with the following estimate

maxO<k<n log( ) -nH ) < 2log(n + 1), (2.1.29)

where

H(p) - -P log - (1 - p) log(1 - p) .

Alternatively, (2.1.29) follows by Stirling's formula (see [12], pg 48).

Combining the exact expression (2.1.28) and the bound of (2.1.29) results with

1 log Prob(LX =V) iI AIL ) H _( H + H < 2(JJ1) -
n n n ML. (ai) n +

(2.1.30)

The inequality (2.1.26) follows when rearranging the left side of (2.1.30).

(b). Note that I -,LX (V) = 00 if and only if nv(ai) > MLx(ai) = M(ailx) for some ai E E. It

is then impossible in sampling without replacement to have L X = v, as nLX(ai) = N(ailX) <

M(ailx) for any ai E E. 'I

Following the proof of Theorem 2.1.1 the above point estimates result with the analogs of

(2.1.15) and (2.1.16), namely:

Corollary 2.1.1

limsup - log Prob(L E F) -liminf { inf In, Lx (v) (2.1.31)
M-oo nt M-oo vEFrnCn M'' M

and

liminf 1 log Prob(LX e F) -limsup {inf I, (t) } . (2.1.32)
M-oo n M-0o0 VEFFnrn "-M M'M
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The proof of Corollary 2.1.1 is left as exercise 2.1.10.

The following theorem is the desired analog of Theorem 2.1.1.

Theorem 2.1.3 The good rate function I,~,(v) controls the large deviations principle related to the

random empirical measures L X (as elements of i1 j(E)). Specifically, for any set r of probability

vectors in M 1(E) C aRI I,

- inf IogProb(LX E F) < lim sup 1-logProb(LX F) < - inf I,,,(v),
vEFo

- M--oo fl M-c-x - -Et

(2.1.33)

where = limM_ ( -a) E (0, 1) and L x converges to t as MIT -- oo.

Remark: Note that the upper bound of (2.1.33) is weaker than the upper bound of (2.1.12). Also,

see exercise 2.1.11 for examples of sets for which the above lower and upper bounds coincide.

Proof: As already noted, H(.ILi) is a rate function on MI(s), for any fixed / (namely, it is lower

semicontinuous and non-negative). Moreover, the set {v : (J - 3v)/(1 - 3) E Ml(S)} is a closed

subset of M l(S) and therefore. Id,,() is also a rate function for any fixed 3 E (0, 1) and any fixed

i/ E M l (S). Since JIE < oo, the probability simplex Ml(S) is a compact set and thus any rate

function on MAl(v) is a good rate function.

The first step in deriving the bounds of (2.1.33) is to prove that Ip,M,(v) is a lower semicontinuous

function over (0, 1) x ilV (E) x MlA(2) (jointly in /3, /L and v) and is strictly continuous along

sequences O n, n, ,n} where IZ, (v,) < oo. For that purpose, fix a sequence {n, vn, },) such

that 3, -3 E (0, 1), V,n -- V and /u, --/. The lower semicontinuity is trivial along any subsequence

{nk})k=l for which Isnk,,k (v,,n) = co. Thus. without loss of generality assume that I,~,,n(vn) < 0o

for all n large enough, namely that Ltn(ai) > ,nvn(ai) for any ai E S. Then, by rearranging (2.1.25)

Ifln(I/n) = d-H(yn) -H(v) -H( _n - nvn

As /3, are bounded away from 0 and 1 for large n, it follows from the above expression that

/In,4,n(vn) I, ,,(v) since the entropy function H(-) is strictly continuous over M1(Y) (for Irl <

o0).

We turn now to prove the upper bound of (2.1.33). We first deduce from (2.1.31) that for some
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infinite subsequence Mllk, there exist Vk E F such that

lim sup - log Prob(LX E F) = - lim II n. .LLx (vk) =I . (2.1.34)
M-oo n k--oo tk '--Mk

Moreover, the sequence {vk} has a limit point v' in the compact set T. Passing to a convergent

subsequence, the lower semicontinuity of I jointly in B, A and v implies that

It< <-I3,,(v*) < - inf IX,M,(v). (2.1.35)
vET

The proof of the upper bound is complete in view of (2.1.34) and (2.1.35).

In view of (2.1.32) it suffices for the lower bound of (2.1.33) to prove that

- lim sup { inf I Lx (v/) }I > -I 1 () (2.1.36)
At--oo n,.' rT'nL, M' --

for any v E Io where <2,(v) < Do (see (1.1.7) in Section 1.1 for this formulation of the large

deviations lower bound). Fix such a point v. i.e., such that

iL(ai) > 3v(ai) Vai E g . (2.1.37)

In particular. E, C <, and as v E ro as well. v belongs to the relative interior of r in M1 (E,).

Further, (2.1.36) follows from

- limsup { inf I- Lx (' ) } -
M--oo ,,'Er'nMl1(S)n£,. ,w

Therefore, one may assume without loss of generality that ES = r. Now, since /3 < 1 there

always exists a sequence of probability vectors vk E rF which converges to v and for which all the

inequalities in (2.1.37) are strict. As I6C,(.) is continuous along any such sequence. we deduce that

it suffices to prove (2.1.36) for v E Fo for which

min{Jj(ai) - p3(ai)} > 0 . (2.1.38)

By the same argument as in the proof of Theorem 2.1.1 there exists a sequence v,, E r Cn £, such

that v, -- v as n -, oo. Now, since LI - At and .' - ,g the strict inequality (2.1.38) implies that

for all M sufficiently large

min {L .(ai)- Vn(ai)} > 0
aiEE '*23
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and then I Lx (n)) < co (note also that 'l is eventually bounded away from 0 and 1). Therefore,

by the strict continuity of I along such sequences

I(,,w(t) = Xlim I rx (vn )

Since v, E r n L,,

lim sup { inf In,,LX () } < lim -_ I,Lr (Vy)
Af-0co vErrC- - M-oo M

and the inequality (2.1.36) now follows. a

Exercises:

2.1.10 Prove Corollary 2.1.1.

2.1.11 Let Ir = infrF I£s,(M). Prove that when Ir < oo and r is included in the closure of its

interior, then

Ir = lim -logProb(L E r) .
.f-oo n

Hint: See exercise 2.1.2 and use the continuity of I/s,(') within its level sets.

2.1.12 Prove that the rate function I~,() is a convex function.

2.1.13 Prove that the large deviations principle of Theorem 2.1.3 holds for , = 0 with the good

rate function /o,,(.) = H(.I-J). provided that n - oc.

Hint: First prove that the left side of (2.1.30) goes to zero as long as n - oo (i.e., even when

(lo(M+l1)) - oo). Then prove the lower semicontinuity of Ip,(v) at /3 = 0 and use it to derive

the upper bound. Finally, it suffices to prove the lower bound when E, C -, and so the sequence

V, E MI(E,) n r n £L will converge to v while eventually I rn,L (Vn) < 0°.

2.2 Cramer's Theorem in IR1

Cramer's theorem about the large deviations associated with the empirical means of i.i.d. random

variables is presented in Section 2.1.2 as an application of the method of types. However, the

method of types is limited in its scope to finite alphabets. Moreover, it neither explains why a

large deviations principle is satisfied nor predicts which rate functions one should expect in similar
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situations. In this section, we start pursuingo a different route aiming at proving the analog of

Theorem 2.1.2 when the underlying alphabet E is IR'. The approach outlined here is more amenable

for generalizations and better illustrates the main ingredients involved in proving a typical large

deviations principle.

Consider the empirical means =S - ' =l Xj, where the real valued random variables

X 1,...,X,,... are independent and identically distributed according to the marginal probability

law a E M 1(IR). Let Yn denote the law of S, and z7 E,[X1] denotes the true underlying mean.

If we further assume that F < oo and E[IX 1 - I12] < 0c then S, Pro- x since

E[(Sn- )2] = 2 EE[l --12] =-E[ 0. (2.2.39)
n n Ln-boo

Actually, the finite variance condition is not needed for the convergence in probability but we will

not care about that here. Because of (2.2.39), pzn(A) - 0 for any set A such that x Y A.

Cramer's theorem characterizes the logarithmic rate of this convergence by the (rate) function

Ai'(x) = sup [Ax - A(A)], (2.2.40)
.\EIR'

where

A(A) - log lI(A) = log E[eAX1], (2.2.41)

is also called the logarithmic moment generating function. Note that while A(A)> -oo it is-

possible to have A(A) = oo. Let DA - {A (A) < oo} and DA' {x: A'(x) < oo}.

The rate function A'(x) of (2.2.40) is called the Legendre transform of A(A). Some of the

properties of this function (and of A(A)) which are useful when proving Cramer's theorem are

summarized in the following lemma whose proof is deferred to the end of this section. The exact

definition of Legendre transform and its properties for more general vector spaces are presented in

Sections 2.3 (for IRd) and ?? (for a general class of metric spaces).

Lemma 2.2.1

(a). A is a convex function and A' is a convex rate fiunction.

(b). A'(7) = 0 and for x E [(, oc),

A'(x) = sup(Ax - A(A)], (2.2.42)
A>O
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is nondecreasing. Simiiarly, for x E (-x. .2j

A'(x) = sup,\x - A(A)] (2.2.43)
,\<

and is nonincreasing.

(c). For any a E 'Do
1

(7) = E[XteOx ' ] (2.2.44)

and

A'(77) = y ==H A'(y) = 7y - A(77) (2.2.45)

The following definition is needed for the precise statement of Cramer's theorem.

Definition 2.2.1 The logarithmic moment generating function A(.) is steep if liminf,,,o IA'(A,) =

co for any sequence A, E D° which converges to A E DA \ D° .

A weak version of Cramer's theorem is proved below, establishing the large deviations principle in

IR1 when A(.) is a steep function and 0 E DO. For example, both of these conditions hold when

DA = IR1. It is possible to establish the large deviations principle in IR1 with no condition on A(A)

by adopting a more sophisticated proof based on sub-additivity and convexity arguments. This is

pursued in much generality in Sections ?? and ?? where the exact consequences for the special

case discussed here are given in exercise ??.

Theorem 2.2.1 (Cramer)

(a). The large deviations upper bound

limsup -log 1,n(A) < - inf A'(x), (2.2.46)
n-oo n rEA

holds for any measurable A C IR1.

(b). For any open set G C al

liminf 1 logp,(G) > - inf _A(x), (2.2.47)
n-oo n ZEGn.

where .F { ( :x = At'(A) for some A E D)}.

(c). If DA. C 7 then the family of probability measures an satisfies the large deviations principle
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with the rate function A'(x). In particular, ,Un satisfies the large deviations principle if DA = aI1.

(d). If 0 E DO, and A is a steep function then the family of probability measures JAn satisfies the

large deviations principle with the good rate function A*(x).

Remark: The Legendre transform A'(x) is a natural candidate for the rate function under a very

general situation where the upper bound (2.2.46) holds (for more on this issue, see Sections 2.3

and ??). For that reason, convexity plays an important role in large deviations as seen throughout

Chapters ??-??.

Proof:

(a). If 7 E A then the upper bound (2.2.46) trivially holds (as A'*(') = 0). Otherwise, let (x_,x+)

be the largest interval around x such that (x_, x+) n A = 0. Since

A C (-oox- U [x+., ) _ U A+,

it suffices to prove that

pun(A+) < e - "n ' (x+) (2.2.48)

and

;,an(A-_) < e - nA ' (x - ) (2.2.49)

in order to prove the upper bound. Indeed, then

tn,(A) •< [Lt(A+) + tn(A_) < e- nA' (r+) + e-n A ' (x- ) < 2e - n m in { 'A ' (x- )' A ' ( +) }

By part (b) of Lemma 2.2.1

min{A'(z_),A:(x+)} = infA*(x)
:EA

and the proof of the upper bound follows.

Returning now to prove (2.2.48) and (2.2.49), these are consequences of a special form of

Markov's inequality. Clearly, for any A > 0,

Ln,(A+) < fA+ e'' (- '+) dpn,(z) < e-n+E(ex"nn)

= e-n':+ ri 1 E(eXx) = e-n(AZ + -A(X )] (2.2.50)

Therefore,

/n (A+) _< e- ,up_ [,xr+ -^(,\X)
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and (2.2.48) follows by (2.2.42) as x+ E [7, cc). The proof of (2.2.49) is similar.

(b). The lower bound of (2.2.47) trivially holds when G n ; is an empty set. Moreover, since G is

an open set it suffices to show that for any x E F, and any open interval B,,s of center at x (and

width 26)

liminf -log n(Br,6) > -A' (x). (2.2.51)
n---oo n/

Consider first points y E F. Fix such a point y = Al'(7) E F and fix 6 > 0. Note that 7 E 'DI and

define the associated probability measure (see [12])

l(dx) = e ti(n)z(dx) .

Indeed A is a probability measure as ft( d(dx) = fR e": y(dx) = 1. Define accordingly An

to be the law governing S, when Xi are i.i.d. random variables of law fi. Note that by (2.2.44)

EA(X 1) = 1 J e xe j(dx) = ,V(,) = y

Thus, the mean of Xi under f equals y and by the weak law of large numbers,

nlim ft(By.s) = . (2.2.52)

Moreover,

=,j d(Byxi) .= djz(x,.) > e ( j e,-rlidu(lx) ... dL(xn)

= n(Bys )e- n(rly +l ll S)+nA(n7) = Af(B ,S )e
- nA '

(y)e
-
n1716

5 (2.2.53)

where the last equality follows by (2.2.45). Therefore, by combining (2.2.52) and (2.2.53)

liminf-1log Ltn(Byv.) > -V'(y)-1rl
n--.,0. n

Take now 6, - 0, 6, < 6. Then, from the above,

liminf 1 log ,n (Bys) > liminf 1 logn (By,65,)n--o ,n n-oo n

> -i'(y) - 1716 l -A'(y)

and the proof of (2.2.51) is complete for y E F.
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The inequality (2.2.51) trivially holds whien .x i Do\.., while when x E A,. n F there exist

y, E ' C_ DA. such that y, - x. Since Ai'() is a convex rate function, A'(yr) - A'(x) and as Br,5

is an open set, eventually By,,sr C G for some 6, > 0. Finally, apply (2.2.51) for yr E XF to obtain

liminf -logy,A(BS,6) > im liminf logAn(By,,s,) > - lim A'(yr) = -A'(x).
n-oO n r-o n-o. n r-oo

(c+d). If DA. C 7 then for any G C IR'

- inf _A(x) > - ininf (x)
xEGn.Y xEGnD,. zEG

The large deviations principle now follows by combining (2.2.46) and (2.2.47). The claim is a direct

consequence of parts (b) and (c) in Lemma 2.2.2 below. 0

Remarks:

(a). The crucial step in the above proof of the upper bound is the exponential form of Markov's

inequality combined with the independence assumption by which one can decompose the bounding

exponent. For weakly dependent random variables a similar approach is to use the logarithmic

limit of the left side of (2.2.50) instead of the logarithmic moment generating function for a single

random variable. This is further explored in Section 2.3.

(b). The crucial step in the above proof of the lower bound is the exponential change of measure

applied when defining the associated measure TF. This is particularly well suited to problems

where, even if the random variables involved are not directly independent, some form of underlying

independence exists (e.g., when a Girsanov type formula can be used, as in Chapter ??). Unless

coupled with some convexity, this argument may in general fail in the dependent case. For more

about it, c.f. Section ??.

The following lemma lifts some of the mystery behind the condition A. C_ F.

Lemma 2.2.2

(a). .F C VDA. and both are intervals. Also 0 E D!A which is an interval.

(b). If 0 E D2 and A is a steep function then pA'. C F.

(c). If 0 E DA then A' is a good rate function.

Remark: Both the steepness of A and the condition 0 E D2) are necessary for DA' C- F (for details

see exercise 2.2.3).
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Proof of lemma 2.2.1:

(a). The convexity of A follows by Holder's inequality, as for any 0 E [0, 1]

A(9A 1+(1-0)A2) = log E[(e AXX )O(eA2X1 )(1-9)] < log{E[eA1Xi ]GE[eA2XI](1-0)} = OA(A 1)+(1-9)A(A2 )

Clearly A(O) = log E[1] = 0, so A'(x) > Ox - i(O) = 0. Let x,, - x. Then for any A E IR,

liminf A'(z,) > liminff[Ax, - A(A)] = Ax - A(A)

and thus

lim inf A*'(n) > sup [Ax - A(A)] =A(x)
Xnlx AEIR

establishing the lower semicontinuity of A'. Thus, A' is a rate function.

The convexity of Ai' follows by definition as

0A-(x 1) + (1 - 0)A'(x 2 ) = sup {Axl - A(A)} + sup (l - O)Ax 2 - (1 - 0)A(A))
\EIR AEIR

> sup{(0zl + (1 - 0)x2 )A - (A)}A( = i 1'(OX + (1 -. )x 2 )
AEIR

(b). By Jensen's inequality,

A(X) = log E[e\X',] > E[log e\X'] = A,

for any A E IR and thus A'(Y) = 0 (this should have been expected in view of (2.2.39)).

Suppose now that x E [x, oo). Then, for any A < 0

Ax - A(A) < At - A(A) < A-'() = ,

and (2.2.42) follows since A'(x) is non-negative. Moreover, A*'(x) is nondecreasing for x > Z since

for any A > 0 the function g(x) = Ax - A(A) is nondecreasing. The proof of (2.2.43) for x E (-oo,7]

is similar.

(c). The identity (2.2.44) follows by interchanging the order of differentiation and integration. This

is justified by the dominated convergence theorem since for E small enough

E[IXille7 x '] < - (MI(7 + e) + M(, - E)) < 0 .

Let A'(r/) = y and consider the function g(A) = Ay - A(A). As g(.) is a concave function and

9'(7) = 0 clearly g(iq) = supAxE g(A) and (2.2.45) is established. C
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Proof of Lemma 2.2.2:

(a). The sets DA and DA'. are convex since the functions A. and -Ai are convex. Further, DA and

DA.' are intervals since any convex subset of inR is an interval. It was already noted that A(0) = 0,

so 0 E DA. Moreover, A!'(.) is nondecreasing since IA(.) is convex. Now, since DO is an interval so

is F. Finally, F C_ DA. by (2.2.45).

(b). Since 0 E Do certainly 7 = A'(0) E F and if DA. = {7} the proof is completed. Otherwise,

DA. is a non-empty interval. Consider now some x > 7 and suppose that x E DA.. Recall that

A'(x) = supxeA+ g(A) where the concave function g(A) Ax - A(A) is continuous within the

interval D+ _ DA Pn [0, oo) and differentiable in the non-empty interior of D +. Consequently,

MA'(x) = limr_,g(A,) for some positive sequence A, E D7 such that g'(A,) > 0. Further, the

sequence {,r} is bounded since k(zx + e) < Xc for some E > 0, and as such has a limit point,

say A'. Passing to the convergent subsequence, A\' DA implies by the steepness of A(-) that

lim_,_ g'(A,) = -oo. This contradicts the above requirement that g'(A,) > 0. Therefore, A' E DO

implying x = A'(A*), i.e.. x E F. A similar proof applies for z < x so PD. C F. Since DA. is an

interval of non-empty interior it then follows that D,. C T.

(c). If 0 E DLI then there exist A+ > 0 and A_ < 0 which are both in VA. Since for any A E IR'

I'I(x) > Asign(x) - ()
1X 1 'I

it follows that

liminf A) > min{A+, -A_} >0.

Thus, in particular :A'(z)i_ co and its level sets are bounded. Recall that closed and bounded

subsets of iR1 are compact, so A' is indeed a good rate function. [

Exercises:

2.2.1 Suppose that DA = IR. Prove that Lz({x}) = e-A'(x) when xz E pA \ A F.

Hint: Show first that there exists {Ae} such that lAel - co and fnR e\t(z-)dju(z) e-A'(=)

2.2.2 Explain why the above proof of (2.2.51) may not work when x E VA. \ 'F.

Hint: Try distributions with density of the form Ce-,'1ll/(1 + jzxp) for appropriate p.
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2.2.3 (a). Prove that if i,(A) = oo for all A > 0 and x < 30, then '(x) = 0 for any x > x, while

F C (-oo, T].

(b). Suppose now that DA = (--co, A] where A0 > 0 and limAtA, A'(A) = xo < oo. Prove that

'*(x) = Al(xo) + AO(x - x0) for any x > xo while 7 C (-oo, xo].

2.2.4 Prove that it(.) is lower semicontinuous.

Hint: Suppose that M(A) = Xo for some A > 0 while A - 6 E DA for all 6 > 0. Let dG(x) -

eAxdy(x) and observe that lim...oG(,) = oo. By integration by parts show that M(A - 6) >

e-'lG() - oo. Conclude the proof using the convexity of A(.).

2.2.5 (a). Prove that A(A) is C o in D' and that A'(x) is strictly convex and CO° in .F.

Hint: Show that x = A1'(r) E F° implies that A"(77) > 0.

(b). Construct an example where DA = IR1 while A'(.) is discontinuous.

Hint: Use a binary valued random variable.

2.2.6 Show that

(a) For X1 a Poisson(S) random variable V(zx) = 0 - x + xlog(,) for x > 0 and A*(x) = 00oo

otherwise.

(b) For X 1 a Bernoulli(p) random variable A,'(x) = x log() + (1 - )log(j-') for x e [0,1] and= 1-'-p for x 6 [0, 1 ] and

A'(x) = oo otherwise.

(c) For X1 an Exponential (8) random variable A'(x) = sx-1-log(8x) for x > 0 and A*(x) = oo

otherwise.

(d) For X 1 a Normal (0,2) random variable iV(x)= 22

Verify that a large deviations principle holds in all these cases.

2.2.7 Let (x_,x+) be the largest interval around T such that (x_, x+) n A = 0. Define

IA = min{A'(x-),A'(x+)} and x' any point at which this minimum is obtained.

(a). Prove that

lim -log pn(A) = -'A (2.2.54)
n-oo 7n

32



whenever I.. = oo.

(b). Prove that (2.2.54) also holds for Ia < ,x if x. E Al° n F.

Hint: Let x, E A ° n .E be a sequence which converges to xx and apply (2.2.51) in order to verify

that liminf,_o - ogu(A) _> -limrloo i(xr) = -jA(x").

2.2.8 Assume that a < X 1 < b

(a) Show that for any A

M(A) < b XeA +-aeAb
b-a b-a

This is the main ingredient of Hoeffding's inequality.

(b) Use (a) to show that for any a < x < b

x: - a x - a
AZ(x) > H( I ) X (2.2.55)

b-a b-a

where H(plpo) - plog(p/po) + (1 - p) log((1 - p)/(1 - Po)).

(c) Prove that the inequality (2.2.55) is sharp.

2.2.9 Assume that 7 = E[X1] is finite, x 1 < b and V'ar(X¥l) < a 2

(a) Show that for any A > 0

XI (b - 7 (- )2 ( 2

M(A) {(b - 7)2 + or2 / (b- )2 + a 2 b2

This is the main ingredient of Bennet's inequality.

(b) Use (a) to show that

A'I(x) > H(p.Ip-) , (2.2.56)

for any Z < x < b where p, (b-F)2+( 2

(c) Prove that the inequality (2.2.56) is sharp.
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2.3 A general large deviations principle in IRd

Cramer's theorem 2.2.1 possesses a multivariate counterpart dealing with the large deviations of

the empirical means of i.i.d real vectors in iRd. Actually, the essential elements in the proof of this

theorem extend to a more general class of dependent random vectors. This is explored here, where

emphasis is put on the new points in which IRd differs from IR' with an eye towards possible infinite

dimensional extensions.

Key applications are of-course Cramer's theorem in IRd which is presented in Theorem 2.3.2

and its consequence - Sanov's Theorem for finite alphabets (see Corollary 2.3.1 and exercise 2.3.1).

Some simple non i.i.d. applications are left as exercises 2.3.6, 2.3.8 and 2.3.9 while Section 2.4

is devoted to another class of key applications - the large deviations of Markov chains over finite

alphabets.

The set-up considered here consists of a sequence of random vectors Z, E J l d with laws s,n and

logarithmic moment generating functions

ln(A) log E [e< Zzn>] (2.3.57)

where < A, x >=a d AJzx is the usual scalar product in Rd with xj the j-th coordinate of the

point xz IRd and xI .-/< xx > the usual Euclidean norm.

The existence of the limit of the properly scaled logarithmic moment generating functions

indicates that /Ln may satisfy a large deviations principle. Specifically, the following assumption

prevails throughout this section.

Assumption 2.3.1 There ezists a sequence of constants a, - 0 such that for each A IR d ,
n-oo00

the limit

A(A) _ lim aAn(a'lA) (2.3.58)

exists (possibly as a point in [-oo, ol]). Further, 0 E 19A where IDA is the domain in which A(.) < oo.

For example, when p, is the law governing the empirical mean S, of the i.i.d. random vectors

Xi E IRd then for any n E Z+

-,n(nA) = A(A) = log E[e<' \ Xl>] (2.3.59)

34



and the above assumption holds whenever 0 E D..

Definition 2.3.1 The Fenchel-Legendre transform of A(A) is

A'(x) = sup (< A,x > -A(A)), (2.3.60)
\EIRd

with DA. denoting the domain in which At'(.) < oc.

Cramer's theorem suggests that A' is the natural candidate rate function for governing the large

deviations principle associated with A,. This is indeed proved in Theorem 2.3.1 under an addi-

tional condition. The properties of the functions A and A' which are needed for that purpose are

summarized in the following lemma whose proof is deferred to the end of this section.

Lemma 2.3.1 Assume 2.3.1.

(a). A(A) is a convex function. A(A) > -o everywhere and At (x) is a good, convex rate function.

(b). DA and DA. are convex sets.

(c). Suppose that y = VA(qr) for some q E Do. Then

At'(y) = < 7,y > -A(i ). (2.3.61)

(d). Let y, rl be as in (c) above. Then, for any x - y

:A;(x) > :Ak(y) = 0 , (2.3.62)

where AR(.) is the Fenchel-Legendre transform of

A,7(0) = A(0 + 1) - A() . (2.3.63)

Remark: These convex analysis considerations are addressed again in Section ?? in a more abstract

setup.

The general large deviations principle in ]Rd is now summarized as follows.

Theorem 2.3.1 (Gartner) Assume 2.3.1. Then

(a).For any closed set F

limsup a, log Atn(F) < - inf A"(x). (2.3.64)
n-oo zEF

35



(b). For any open set G

liminf a, log jin(G) > - inf A*(x), (2.3.65)
n-oco 23EGn65

where F-- ({x:: x = VA(A) for some A I}.

(c). If DA^. C 7 then the family of probability measures ,un satisfies a large deviations principle

controlled by the good rate function Ai'(x).

The following lemma, whose proof is also deferred to the end of this section, makes the above

theorem applicable by stating explicit conditions on A under which DA- C_ F.

Lemma 2.3.2 (Ellis) Suppose that A(A) which satisfies 2.3.1 is a lower semicontinuous function

which is differentiable in 'D, and moreover it is a steep function, namely for any convergent
sequence An E DI° whose limit does not belong to D, lim,-o VA(An)l = Co. Then, ,A'- C .

The proof of Theorem 2.3.1 is given in the sequel, preceded by the statement and derivation of

a key application - Cramer's theorem about the empirical means of i.i.d. random vectors in IRd.

Theorem 2.3.2 Let jin be the laws governing the empirical means Sn- A ! j=l Xi where Xi E IRd

are i.i.d. distributed according to the law It. Suppose that the logarithmic moment generating

function

A(A) ) log E,, [e<AX>I , (2.3.66)

is a steep lower semicontinuous function which is finite in some open ball centered at the origin (in

particular these conditions hold when DA = REd). Then, for any measurable set r C IRd

1 1
- inf A*(x) < liminf - logk n(r) < limsup - log n(r) < - inf A'(x), (2.3.67)

pEr
o n-oo n n--o n Xer

with A* being the Fenchel-Legendre transform of A.

Proof: Recall that in this case the basic assumption 2.3.1 holds (see (2.3.59)) and indeed A of

(2.3.58) is given by (2.3.66). In the statement of the theorem it is further assumed that A is a steep

function. It follows from the definition (2.3.66) that A is differentiable in VD (by an argument

which is similar to the proof of (2.2.44) in Section 2.2). Thus, Lemma 2.3.2 applies and (2.3.67)

follows by Theorem 2.3.1. [0
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Remark The assumption of lower semi-continuity may be relaxed. For details, c.f. exercise

2.3.3.

The essential ingredients for the proof of Theorem 2.3.1 are those presented in Section 2.2 in the

course of proving Theorem 2.2.1, namely - the exponential form of Markov's inequality is applied

for deriving the upper bound and an exponential change of measure is used for deriving the lower

bound. However, here one encounters two new obstacles which slightly complicate both parts of

the proof.

Proof of Theorem 2.3.1:

(a). In IRd the monotonicity of A' stated in Lemma 2.2.1 part (b) is somewhat lost. Thus, the

strategy of containing A by two half-spaces A- and A+ is not as useful as it is in IR'. Instead,

here one uses Markov's inequality to obtain tight upper bounds for all small closed balls. Then,

compact sets are covered by an appropriate finite collection of small enough balls and the upper

bound follows for compact sets by the union of events bound.

As mentioned in Section 1.1. proving (2.3.64) is equivalent to proving that for any 6 > 0 and

any closed set F C Ild

lim sup a, log 1t,(F) < 6 - inf I6(x) (2.3.68)
a--_o ,EF

where

6(z) A'(x)-6 x ED .

Fix now 6 > 0 and an arbitrary compact set r. For any q E r choose Aq E ^DA for which

< Aq,q > -A(XAq) > iS(q) (2.3.69)

This is always possible by the definitions of AV and I6. Choose now pq > 0 such that pqlAql < 6

and let Bq,pq be the open ball with center at the point q and radius pq with Bq,pq the corresponding

closed ball.

Then, for any n and any q E r

un(Bq,pq) < exp (- inf {an1 < Aqx >}) E exp(a-1 < AqZn >)] -
EBq, pq

Thus,

anlogln(Bq,pq) < - inf < Aq,x > +a,An(alXAq) < 6- < Aq,q > +anAn(a'lAq). (2.3.70)
XE Bq,pq
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As r is a compact set. one can extract from the open cover U Bq,pq of r a finite cover which
qEr

consists of N < co (depending only on r and 6) such balls with centers ql,...,qN in r. By the

union of events bound and (2.3.70),

a, log uL,(r) < anlog N + 6 - min {< Aq,,qj > -anAn(aX Aq,)}.

Since an - 0 as n -i oo while anAn(a 1 Aq) - A(Aq,) (uniformly over i = 1,..., N), one obtains

lim sup a, log An(r) < 6- min {< Aqi,qi > -A(Ai)} < 65- min I6 (qi),
7n-*o - - = ...... -Ni=,.N

where the last inequality follows from (2.3.69). As qi E r the upper bound (2.3.68) is thus estab-

lished for all compact sets.

This upper bound is extended to all closed sets in IRd by showing that )tn is an exponentially

tight family of probability measures and using Lemma 1.1.1. Specifically, it is shown in the sequel

that for any a < oo there exists pa large enough such that for the compact set K, = BO,po

lim sup an log n,(Icr) < -a (2.3.71)
n--o

For that purpose, observe first that TO,pd C U==l { x : { x l > p}. Therefore, by the union of events

bound

Pn(Topd) < =n( ( Ixz: I > p})

d

< Z {Jtn([p, o)) + it((- ,-])} (2.3.72)
j=l

where jS are the laws of Zn, the coordinates of the random vector Z,. As DA contains an open

ball around the origin there exist t+ > 0 and 0' < 0 such that A(O+uj) < c00 and A(07u3) < oo

where uj denotes the j-th unit vector in IRd for j = l, ... , d. By the exponential form of Markov's

inequality, for j = 1,...,d

limsup an log A([p, oo)) < -t+ p + lim sup an n(anl tuj) = -Otp + A(tuj) . (2.3.73)
n-oo n-oo

Similarly,

limsup a, log/4((-oo,-p]) < .tp+ A(j'u). (2.3.74)
n-oo
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Now, the inequality (2.3.71) results by combining (2.3.72), (2.3.73) and (2.3.74) and considering

p -+ 00o.

(b). Focusing now on establishing the lower bound (2.3.65) for any open set, it suffices to prove

lim liminf alog i,~(By,s) > -A.(y) , (2.3.75)
6-0 n--oo

for any y E F. Indeed, (2.3.75) then holds for any y E F and (2.3.65) follows by the same argument

encountered in that leads from (2.2.47) to (2.2.51) in the proof of Theorem 2.2.1.

Fix now y = VA(r) E F with / E DO. Then, for all n large enough, A,(a;'rl) < oo and the

"associated" probability measures

dn(:) = exp [a 1l < 77, > -A,(a- 1 77)] d-n(z) (2.3.76)

are well defined. Clearly,

an log 1 n(By,s) = aniAn(a-77)- < q'Y > +an logj exp(an < 77,y - z >)dfin(z)

anAn(a 77)- < 7, Y > -11716 + an log An(By,s) (2.3.77)

Therefore,

lim liminf a, log Lnz(By6,) > A(r/)- < 17, y > + lim lim inf an log, (By,s)

= -(y) + imlim inf an log An(By,s) (2.3.78)
6--0 n--,oo

where the above equality follows by (2.3.61).

Here, a new obstacle stems from the removal of the independence assumption. Indeed, Ea,(Zn) - y

as n -- o, but now one still has to establish the appropriate analog of the weak law of large

numbers. This is handled in the sequel by applying the large deviations upper bound for the

"associated" family of measures ,n. Indeed, the proof of (2.3.75) is completed by showing that for

any 6 > 0

lim sup a, log An(B ,6) < 0 (2.3.79)

For that purpose let An,,(.) denotes the logarithmic moment generating function corresponding to

the law n,. Then, for any 0 E IRd

a'Anm,7(alO9) a g a lit ean '<z> dPn(z) = anA,(a-l(O +r ))- anAn(an i7) -' A,7(8)
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as a,~A,(al77½) < oo for all n large (recall that 77 E DA). Moreover, An(0 ) = 0 and A,7() < oo for

all [01 small enough since 71 E DA (c.f. (2.3.63)). Thus, a large deviations upper bound of the form

of (2.3.64) holds for the sequence of measures , In particular, for the closed set B c it yields

limsup a, log in(B,,) < - inf A,(x). (2.3.80)
n--oo zEBc,,

Moreover, Ag(x) > 0 for any 2x y in view of (2.3.62) and paralleling the proof of part (a) of

Lemma 2.3.1 one easily shows that Ai is a good rate function. Therefore, infzeBc, A(x) > 0 for

all s > 0 and (2.3.80) implies (2.3.79), concluding the proof of the lower bound (2.3.65).

(c). The large deviations principle follows by combining (2.3.64) and (2.3.65) as DA- C 7 implies

that for any G

- inf _'(x) > - inf :'(z) =- inf A'(x)
zEGn;F XEGnD,2. zEG

Remarks:

(a). The proof above actually extends beyond IRd and in principle is applicable for any metric space

(as shown in Chapter ??). However, two points of caution are that the exponential tightness has to

be proved on a case by case basis and that in infinite dimensional spaces A is rarely differentiable

and therefore the analog of Lemma 2.3.2 typically fails to hold.

(b). In the current set-up the condition 0 E D)' which is needed for the above proof does not follow

as a consequence of A'. C F. For this reason it is incorporated in Assumption 2.3.1. Note however

that the condition 0 E D'A is not required at all for proving the upper bound (2.3.64) for compact

sets.

As mentioned in Section 2.1. Sanov's theorem for finite alphabets, Theorem 2.1.1, may be

deduced as a consequence of Cramer's theorem 2.3.2. Indeed, note that the empirical mean of

the random vectors IY = [lX,=ai, lX=a 2 . .., lx=a sl] equals L X , the empirical measure of the

i.i.d. random variables X 1,..., X, over the finite alphabet E. Moreover, as Yi are bounded, here

DA = IR.I ' and one obtains the following corollary of Theorem 2.3.2.

Corollary 2.3.1 For any set r of probability vectors in IRI l1

- inf A*(v) liminf 1 log Prob,, (L X E I) < lim sup -1 log Prob,, (L X r) < - inf A*(v)
vE o - n-*oo f - n-- - vEr

(2.3.81)
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where :A' is the Fenchel-Legendre transform of the logarithmic moment generating function

ISl
A(A) = log E, (e<'A' 1 >) = log Ee A,(aj) (2.3.82)

i=l

and A = (A1, A2 ,. .. , A 1 1) E IRl'.

Remark: Comparing the above corollary to Theorem 2.1.1 it is tempting to conjecture that

A*'() = H(.yL). Indeed, this is proved in exercise 2.3.1. Actually, as shown in Section ?? the

rate function controlling a large deviations principle in Itd is always unique, thus this result is not

surprising.

Proof of Lemma 2.3.1:

(a). Since Al, are convex functions (see the proof of part (a) of Lemma 2.2.1) so are a,A,(a- 1 ) and

their limit A(-) is convex as well. Moreover. .A(0) = 0 and therefore A(0) = 0 implying that A* is

non-negative., Both the convexity and the lower semicontinuity of A' follow from its definition via

(2.3.60) (see proof of part (a) of Lemma 2.2.1).

Now if A(A) = -Xo for some A E Id then by convexity iA(aA) = -oo for all a E (0,1].

Moreover, since A(0) = 0 it follows by convexity that A(-aA) = oo for all a E (0, 1] contradicting

the assumption that 0 E D'.

Since 0 E VD, it follows that Bo0 s C DA for some 6 > 0 and C = supAEBEO6 A(A) < oo since the

convex function A is continuous in 'Dx. Therefore,

'(zx) > sup {< A,x > -A(A)} > sup < A, > - sup A(A) = 6Ix - C (2.3.83)
,\Bo,6 .AEBo.6 .\EBo, 6

Thus, the level sets {x : .A(x) < a} are clearly bounded within a closed ball around the origin (of

radius (a + C)/6) and A' is necessarily a good rate function.

(b). The convexity of DA and 2DAe is merely a consequence of the convexity of A and A* respectively.

(c). Clearly A'(y) > [ < 7r, y > -A(77)]. Assume that this inequality is strict, i.e., for some A E DA

[< A, y > -k(,) ] > [ < 77, y > -A(r77)] . (2.3.84)

Since DAP is a convex set,

g(a) < A - 7, y > -.i + a(A - 77))+ < r, y > a E [0, 1] (2.3.85)
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is a finite valued concave function. Thus. by concavity

g(l)- g(O) < lim inf =< A - r, y - VA(r7) >= 0, (2.3.86)10 a

where the last equality follows from the assumption y = VA(77). However, the inequality above

contradicts (2.3.84) and therefore (2.3.61) is established.

(d). The function A, is non-negative (being the Fenchel-Legendre transform of A, where An(0) = 0)

and moreover

A,(x) = sup {< 0, x > -A( + ,7)} + A(7) = A'(x)- < 77, x > +A( 77). (2.3.87)
OEIRd

Thus, An(y) = 0 by (2.3.61) and A;(x) > A;(y) for any x ~ y. If A;(x) = 0 for some x then for

any 0 E nRd

< o, x > < A,7(0 ) . (2.3.88)

In particular also

< 0, X> < lim (I) < 0, VAn(0) >, (2.3.89)

where VAn,(0) = VA(77) = y. Since the inequality (2.3.89) holds for all 0 E IRd, necessarily

x = VA,(0) = y. Thus, A;(x) > 0 for any xz y and (2.3.62) is established. O

Proof of Lemma 2.3.2:

Since D?, is not empty, by (2.3.61) so is DA.. Further, if DA- = {x} then necessarily x =

VA(0) E .F and the proof is then complete. Therefore, we may assume from here on that the

convex set DA,. contains at least one line so its relative interior

riDA. {- {x E AN. : y E D,\. = x - E(y - x) E DZA. for some e > 0}

is non-empty and moreover

DA. = ri DA (2.3.90)

The subdifferential OA(A) of the convex function A(.) at a point A E IRd, is defined as

9A(A) {x: A(0) > A(A)+ < x, 0- A> VO E IRd} = {x :< A, x > -A'(x) > A(A)},

(2.3.91)

where the second equality is a direct consequence of the definition of the Fenchel-Legendre trans-

form. It is easy to check that dA(A) = 0 for A ' DA (recall that A > -oo everywhere) while
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otherwise OA(71) = {x: A;(x) = 0} (where A.; is defined in (2.3.63)). Since A is differentiable

throughout ZDA (by assumption), it follows by (2.3.61) and (2.3.62) that OA(r7) = {VA(rn)} for any

71 E DoA.

The proof of the lemma is now divided into the following two steps:

(a). Since A is lower semicontinuous, for any x E ri DA' there exists A E IREd such that x E 0A(A).

(b). Since A is a steep function, hA(A) = 0 for any A E DA \ DA,.

When combined, these two claims result with

ri DA. C U OA(A) = U {VA(A)} = F', (2.3.92)
AEIRd \EDA

which, together with (2.3.90), amount to the proof of the lemma.

(a). Fix a point x E ri DA' and define the function

(y) 'f A(x + by)- A'(x) lia*(x + Sy) - A-(x)
g(y) inf _ li (2.3.93)

5>0 6 s1o 6

where the convexity of A' results with a monotonicity in 6 which in turn implies the above equality

(and that the above limit exists). For the same reason g(y) is a convex function and the set

£g A {(y,~) : ~ > g(y)} C IRd x IR is a convex set. Further, g(ay) = ag(y) for all a > 0 and in

particular g(0) = 0. Observe that g(y) = Xo when x + by DA-. for all 6 > 0. Consider therefore

those directions y such that g(y) < oo. Since x E ri DA., it then follows that for some E > 0 the

whole line segment x + /y for I3I _< e is in DA'.. Let 9 A cy so by the convexity of A*

A"(x) < (1 - 6)A'(x + b9) + bA(x - (1 - 6)9) < co (2.3.94)

for all 6 E [0, 1]. This implies

g(q) > lim[A'(x + 69) - A'(z - (1 - 3)9)] > -Al'( - 9) = -A'(x - ey) > -oo (2.3.95)

where the last two inequalities follow by the non-negativity and upper semicontinuity of A*, and the

fact that x - Ey E DA-. Since g(y) = - it follows from the above that g(y) > -oo for all y. Since

g(Y) = lyjg(y/lyl) and inf{z:,ll=l} g(z) > -oo it now follows that limrinf yo g(y) > 0, implying that

(0, -1) ¢ £9. The set -- is closed, convex and non-empty (for example (0,1) E F£). Thus, there
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exists a hyperplane in IRd x IJt which strictly separates the point (0, -1) and the set £g (this is a

particular instance of the Hahn-Banach theorem quoted in Appendix ??). Specifically, there exist

A E Id and p E IR such that

< A,O> +p = p > < A,y> -~p V(y, )E £ . (2.3.96)

Considering y = 0 it is clear that p > 0 and then by specializing (2.3.96) to I = g(y) one obtains

that g'(A) < 1 where g' is the Fenchel-Legendre transform of g(y). Observe now that g* assumes

only the values 0 or oo as

g(A)sup (< A, > -g(y)) = sup [ sup (< A > - ))= (2.3.97)
y wet>o {Z: Iz=1} > AC

where C = {A: Izi = 1 = 9(g(z) >< A, Z >. Thus, the set C must be non-empty or equivalently

there exists A0 E IRd such that g(y) >< Ao, y > for all y E aRd

Considering now (2.3.93) one obtains

A'(z)-- A(x) >< Ao,z - x >

for all z E Rd. Therefore, also

< Ao, z > -iA(z) = sup (< Ao, z > -A'(z)) > A(Ao) , (2.3.98)
zEIRd

where the above inequality is a property of the Legendre transform of any convex, lower semicontin-

uous function f such that f(.) > -co everywhere and f(.) ~ oo (consider Section ?? for a proof).

Indeed, it is assumed in the statement of this lemma that A(.) is lower semicontinuous and the

other conditions mentioned above are satisfied in view of part (a) of Lemma 2.3.1. The inequality

(2.3.98) amounts to x E 0A(Ao) for some A0 E DA.

(b). Suppose there exists a point 77 E DA \ Do such that dA(7q) is non-empty. Then, 09A(77) = {x:

A;(x) = 0O is a non-empty closed convex set (since A; is a convex rate function). Suppose that an

infinite line, say {zo + tz}telR is contained in AA(n7 ). Then, for all 0 E IRd and any t E IR,

A(8) > A(7r)+ < 0 - r7, zo > +t < 0 - i7, z > (2.3.99)

which is possible only if DA C {0 : < 0, z >= 0} contradicting Assumption 2.3.1. From the above,

it follows that AA(r7) is a convex closed set which does not contain infinite lines and as such by [241,
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18.5.3. it contains an exposed point. i.e. there exists x E 0A(77) and a vector v E td such that

< v, x > > < v. Z> Vz E aA(77), - x. (2.3.100)

Let the normal cone to DA at 77 be defined as

Jv _ {n: < A -77, n > < 0 for all X E DA} (2.3.101)

and note that IV is non-empty since 'DA is a convex set of non-empty interior and / E 2DA \ DI.

Then, for any n E .Af and any A E IRd

A(A) > A(i 7)+ < A - 7, x > > A( 7 )+ < A - 77, + n >,

so that x + n E dA(r7) where x E DA( 77) is the exposed point defined above. Therefore, in particular,

by (2.3.100)

< v n > < 0 VnE At. (2.3.102)

We next claim that r7 + 6v E D7) for all 6 > 0 small enough. Indeed, assume otherwise, then by

[24], 23.7.1 there exists n E IV such that

sup < A. n > << r, n > < < 77 + 6v, n > (2.3.103)
,\ED A

contradicting the inequality (2.3.102) above.

Choose now a sequence A, = 77 + b,v E 7DO such that 6, -* 0. Since VA(A,) E dA(A,n) for any

n it follows that

A(O) > A(A,)+ < 8 - A,X, VA(A,) >, V8 E It d (2.3.104)

Because of the assumption that A is a steep function. E, = 1/IVA(A,)I - 0 as n - oo and

enVA(An) has a limit point y E IRd with IYI = 1. Passing to the convergent subsequence {A,}, for

any n large enough and any 9 E I d,

A(O) > (1-En) ,x(77)+(1- en) < _-7, x >

+ en A(A,()+ < 8 - X,, enVA(An) > (2.3.105)

where x E dA(77) is as specified in (2.3.100). In the limit n - oo by the upper semicontinuity of

the convex function A(.)

A(9) > A(77)+ < 9 - 77, z + y > (2.3.106)
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(as lim sup,_,, A(A,) < A(r7) < oc). Therefore. in particular

< v, y > < 0 (2.3.107)

By comparing (2.3.104) for 0 = A, = 71+ Sv with

A(AX) > A(7)+ < A,, - q, x >= A(rq) + En < v, x >

one obtains

6, < v, z > < 6E < v, VA(A,) > (2.3.108)

for the same subsequence {A,} as used above. Multiplying by -n > 0 and taking the limit n - oo

yields < v, y >> 0 in contradiction with (2.3.107). In conclusion, 0A(77) = 0 for any 77 E DA \ A.

Exercises:

2.3.1 Prove that for any Ai E AI ( ~), the relative entropy H(.IlJ) is the Fenchel-Legendre trans-

form of the function A(.) defined in (2.3.82).

Hint: Prove first that PA- = M-1 (I,). Then, show that zl(ai) = 0 and v E Mil(,) imply that

the value of A'(v) is obtained by taking Ai - -oo. Finally, show that v = VA(7 q) when v is a

probability vector with E, = , = E and

7i log [v(a)] i = 1.. (2.3.109)

Conclude that then A'(v) =< 77, v > -A(77) = H(vjl/).

2.3.2 (a). Use the exponential form of Markov's inequality to prove that for any C C IRd any n

and any A E Id

a, logn,(C) < - inf < A,y > +a,A,(a1 A).
yEC

(b). Assume that A(A) = anA(a[1A) for any n (examples where this is true are given in Theorem

2.3.2 and in exercise 2.3.5). Recall the following version of the min-max theorem: let g(o, y) be

convex and lower semicontinuous in y, concave and upper semicontinuous in 0. Let C C IRd be

convex and compact. Then

inf sup g(6, y) = sup inf g(O, y)
yEC O 0 yEC
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(c.f. [101, pg. 174). Apply this theorem to justify the upper bound

a. log I,(C) < - sup inf[< ,\.y > -A(A)] = - inf A"(y)
AEIRd YEC yEC

for any n and any convex, compact set C.

(c). Establish (2.3.64) for all compact sets by applying the above bound. Note that this approach

yields a concrete upper bound for any finite n.

(d). Find a compact set B for which

sup inf[< A,y > -A(A)] < inf A*(y).
AERdYEB yEB

2.3.3 Prove that in the assumptions of Theorem 2.3.2, the assumption of lower semicontinuity

of A may be dropped as it follows from the steepness and i.i.d. structure.

Hint you need to extend exercise 2.2.4 to aId . The only difficulty is with sequences A, -- A not

along a line, but such that their angle from a line converges to zero. Use the last observation

to bound the difference between these two situations in terms of the function G introduced in

exercise 2.2.4.

2.3.4 Let (wt,,. ',wtd) be samples of a Brownian motion at tl,..., td, i.e. (wtj+, - wtj) is a

Normal random variable independent of wt, e < j, of variance (tj+l - tj) and zero mean. Find

the rate function for the empirical mean S, of XSi (wi1,. .. ,wd) where wij, i = 1,...,n are

samples of independent Brownian motions at instances tj.

Remark: Note that the law of S, is the same as that of (Wtl,...,wtd), and compare to

Schilder's Theorem which is presented in Section ??.

2.3.5 Let Xj be i.i.d. random variables over t d with a steep logarithmic moment generating

function A such that 0 E DO. Let N(t) be a Poisson process of unit rate which is independent of

the Xj variables and consider the random variables

N(n)

n =1

Prove that the family of laws /,n corresponding to Sn satisfies a large deviations principle with

the rate function being the Fenchel-Legendre transform of eA(A) - 1.
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Hint: You can apply Theorem 2.3.2 as N(n) = AEjl - where Vj are i.i.d. Poisson(1) random

variables.

2.3.6 Let N(n) be a sequence of integer valued random variables whose logarithmic moment

generating functions An satisfy the Assumption 2.3.1. Let ,,j be i.i.d. random variables over IRd

with finite everywhere logarithmic moment generating function Ax and let /, denotes the law of

N(n)

Zn =an Xj .
j=l

Prove that if the conditions of Lemma 2.3.2 hold for the convex function A(Ax(A)) then /in

satisfies a large deviations principle governed by the Fenchel-Legendre transform of this function.

2.3.7 For any 6 > 0 let Z,,6 = Zn + aVT'TV where V is a standard multivariate Normal random

variable.

(a). Prove that when Assumption 2.3.1 holds for Zn it also holds for Zn,6 with the limiting

logarithmic moment generating function As(A) = A(A) + 2 IA12.

(b). Show that for any x E IRd the value of the Fenchel-Legendre transform of As does not

exceed A'(x).

(c). Prove that if limno E(Zn) = Z E IRd exists then A(A) > < A,: > for any A E IRd.

Conclude that if in addition A is finite and differentiable everywhere then F6 = IRd (where

'a = {x: x = VA6(A) for some A E IRd}).

(d). By applying Theorem 2.3.1 for Zn,6 and (a)-(c) above deduce that for any x E I d and any

e >0

lim inf an log Prob(Z,.6 E B:,,/2) > -A*(x) (2.3.110)

(e). Prove that

lim sup a, log Prob(%/v jl/lV > E/2) < -8E (2.3.111)
n--0 86

(f). Prove that

Prob(Zn E Br,) > Prob(Zn,s E B,,,/ 2)- Prob(v'v/lVIl >Ž E/2) (2.3.112)

and by combining (2.3.110), (2.3.111) and (2.3.112) (for n - oo and then 6 - 0) conclude that

the large deviations lower bound holds for the laws Jn corresponding to Zn.
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(g). Deduce now by part (a) of Theorem 2.3.1 that when Assumption 2.3.1 holds with A which

is finite and differentiable everywhere and when moreover limO E(Z,) exists then ILn satisfy a

large deviations principle with rate function i'.

Remark: This may serve for example as an alternative derivation of Cramer's theorem which

avoids the convex analysis Lemma 2.3.2.

2.3.8 Let X 1,...,X,,... be a real-valued, zero mean, stationary Gaussian process with co-

variance sequence Ri A E(XX,X,+i). Suppose the process has a finite power P defined via

P - limnoo =_, Ri(1- _l). Let /, be the law of the empirical mean Sn of the first n samples

of this process. Prove that pun satisfy a large deviations principle controlled by the good rate

function A'(x) = =.

2.3.9 Again, let X1,...,X,,... be a real-valued, zero mean, stationary Gaussian process with

covariance sequence Ri - E(XXn+i). Assume that this covariance sequence is absolutely

summable and let S(w) > 0 denote its Fourier transform. Consider the empirical covariances

n-.

;=1

for j = 0,...,d- 1. Let Z, E IRd be the empirical covariance vector composed of {Zn} and An

the corresponding logarithmic moment generating functions.

(a). Verify that

An(n0) = - log[l - Ai(R)] .

Here Ai(eR) is the i-th eigenvalue of the product of the covariance matrix R and the matrix O

where O(j, k) = Oj-k for all j E {k, .. , k + d - 1} and is zero otherwise.

(b). Assume that

m 1 log-( ] = log- S() e ]dA(
(this i 4 hr f nr k=O mi

(this identity indeed holds by the limiting distribution of near Toeplitz matrices, see [161). Prove

that the empirical covariance vectors Z, satisfy a large deviations principle controlled by the

Fenchel-Legendre transform of the function A defined above.
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2.4 Large deviations of Markov chains over finite alphabets

The results of Section 2.1 are extended in this section to random variables X1,..., X,Y which take

values in the finite alphabet E = {al,... a i1 }, with a Markov structure instead of an i.i.d. structure.

Although most of the results may be derived by tile method of types presented in Section 2.1,

the combinatorics involved are quite cumbersome (for more details about this approach consider

exercise 2.4.7). Thus, an alternative derivation of these results via an application of Theorem 2.3.1

is adopted here. Without loss of generality, identify E with the set {1, ... E}) so that ai = i.

Let II = {7r(i,j)}i,j=l... ll be a stochastic matrix, i.e. a matrix whose elements are non-negative

and such that each row-sum is one. P7 denotes the Markov probability measure associated with

the transition probability II and initial state x E s. Specifically,

n-1

P7(X 1 = x 1,.... , n = xn) = d(,xl1) II r(xi, xi+l). (2.4.113)
i=1

A matrix B with nonnegative entries is called irreducible, if for any pair of indices i,j there

exists an m(i,j) such that Bm(i'J)(i,j) > 0. where B m denotes the usual product of matrices.

This property is equivalent to the condition that one may find for each i,j a sequence of indices

il,..., i, such that il = i, im = j and B(ik,,ik+l) > 0 for all k = 1,...,m - 1. The following

theorem describes basic properties of irreducible matrices.

Theorem 2.4.1 (Perron-Frobenius) Let B = {B(i,j)} Ijl 1l be an irreducible matrix. Then

there exists an eigenvalue p (called the Perron-Frobenius eigenvalue) such that

(a). p > 0 is real.

(b). There exist right and left eigenvectors corresponding to the eigenvalue p which are strictly

positive, i.e. there exist vectors ix, d with Ai, 7)i > 0 for all i (this is denoted in the sequel by

>s >» 0, 9 >> 0) such that

Z B(i,j)Oj = pOi (2.4.114)
j=l

Z iB(i,j) = PAj (2.4.115)
i=1
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(c). For any eigenvalue A of B, IAI < p.

(d). The right and left eigenvectors pl, ) corresponding to the eigenvalue p are unique up to a

constant multiple.

(e). Let c be any strictly positive vector, then for any i E Z

VI .. I1- 1
limn log LB(i7i)Oj = lim 1 log[ B(ji) j= log p (2.4.116)r-oo n LS:l :--,o n/,

Proof: Parts (a)+ (d) are stated for example in [27J, Theorem 1.5. To prove part (e), let a a
a A

supi ,oi, infi di > 0 and - = infj bj > 0, 6 = supj j (where i is the right eigenvector

corresponding to p above). Then, for all i,j E E,

Bn(i, j)Oj > B-(i, j)j > -B"(i,j) j (2.4.117)
/3ct

Therefore,

-log I lBn(i,(ij)l log B(ij)j = lim lim lo E B (ij)j

= m i log(p0ii)) = logp . (2.4.118)
n-.oo 7n

A similar argument leads to

lim I log IL B"(j,i)j] = logp. (2.4.119)
Lj=1 J

2.4.1 Cramer's theorem for Markov additive processes

Let g: · _ IRd be a given deterministic function. The large deviations of the empirical g-mean

Zn 9(i k) (2.4.120)
k=l

are the subject of this section (for the extension to random functions see exercise 2.4.1). If Xk were

independent, Cramer's Theorem 2.1.1 applies and then the large deviations principle is governed
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by the Legendre transform of the logarithmic moment generating function. Theorem 2.3.1 hints

that the rate function may still be expressed in terms of a Legendre transform even in the current

dependent case where the Xk possess a Markov structure.

In order to find the proper function which replaces the logarithmic moment generating function

A(A) associate with any A E RId a non-negative matrix IIA via

7rA(i,j) = , (i,j) e<> g (j )> i,j E E . (2.4.121)

When II is irreducible it follows that fII are also irreducible matrices since e<<A,g()> is positive.

Let p(IIx) denotes the Perron-Frobenius eigenvalue of HII then log p(II) plays the role of the

logarithmic moment generating function A(A). Specifically, the following analog of Theorem 2.3.2

holds.

Theorem 2.4.2 Assume rI is irreducible and define

1() = sup {< A. > -log p(II)} (2.4.122)
A\E Rd

Then, I(.) is a good, convex, rate function which controls the large deviations of the empirical

g-means {Z,}), i.e. for any measurable set r C IEad. and any initial state x E A,

- inf I(z) < liminf -log P ({Z, E F)) < lim sup - log P({ZZ, E r}) < - inf I(z) (2.4.123)
zEro n--oo n n-oo n zE

Proof: Define

An(A) A log E; [e<A* Zn> ] (2.4.124)

In view of Theorem 2.3.1, it is enough to check that the limit

A(A) li m 1.A(nA) = lim log E en< A' Zn > (2.4.125)n-oo n n-.o3 n

exists for all A E IR d, is differentiable. and that A(A) = log p(IIx). Note that

An(nA) = logE: [e<A e =l (k)>]

n

= log E P-(X = xi,., Xn = xn)l e<A'g(xk)>
aT1 t,...,n k=1

= log E 7r(x,xl)e<<A'g(,l)> ... 7r(2,_l,n,)e<9,g(xn)>

= log (IIA)n'(x, j) (2.4.126)
j=l
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Since FIx is an irreducible matrix, part (e) of the Perron-Frobenius theorem yields (for ¢i = 1)

A_(A) = lim - A(nhA) = log p(IIx) (2.4.127)

Moreover, since EIj is finite it is clear that p(IIx), being an isolated root of the characteristic

equation for the matrix II, is differentiable with respect to A (see [14] for details). Therefore,

Theorem 2.3.1 may be applied to complete the proof. -

Remark: The above proof relies on two properties of the Markov chain - namely, part (e) of the

Perron-Frobenius theorem and the differentiability of p(IIx) with respect to A. Thus, Theorem

2.4.2 holds as long as the Markov chain has these two properties. In particular, the finiteness of !,

is not crucial and indeed a large deviations principle for a general Markov chain set-up is presented

in Section ??.

Exercises:

2.4.1 Assume that X 1,. .. ,X, have the joint law PI where II is an irreducible stochastic matrix.

Consider the empirical means

Zn = -E t
n k=1

where the conditional law of Yk when Xk = j is /j E All(IRd) and for any given realization

{Xk}knl of the Markov chain states the variables TY. are conditionally independent. Suppose that

the logarithmic moment generating functions Aj associated with /j are finite everywhere (for all

j E E). Prove that Theorem 2.4.2 holds in this case where now

A7r(i,j) = r(i,j)eA,(A) i,j E ·

2.4.2 Sanov's theorem for the empirical measure of Markov chains

A particularly important application of Theorem 2.4.2 above yields the large deviations principle

satisfied by the empirical measure of Markov chains. Namely, define LX(i) = E n=l i(Xj), where

(x){ 1 i=

0 otherwise

For i = 1,...,JSE, let a,(i) = Er[LX(i)] = -> ' J(x,i). Then, a, -a+ , as n -- oo where p, is a

unique properly normalized left eigenvector of II (since la,(II-I)(j)l = l rrn+l(xj)-r(x,j)i < 2)
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Further, by Chebychev's inequality, L X - At as n -x c and therefore. L X is a good candidate for

a large deviations statement on M1 (E).

It is clear that L X fits into the framework of Section 2.4.1 with g(x) = (6 1(x),..., 61 1l(x)).

Therefore, by Theorem 2.4.2, a large deviations principle follows with the rate function

I(q) = sup (< A,q > - log p(IIH)), (2.4.128)
\EIRd

where here 7rx(i,j) -7r(i,j) e'\ and q E M1l (E). The following alternative characterization of I(q)

is sometimes more useful.

Theorem 2.4.3

I(q) = J(q) l (2.4.129)
){sup qlog [ii±T, q E u-(n ( 1
u>>uj=

Remarks: This identity actually holds also for non-stochastic matrices (see exercise 2.4.3). In the

i.i.d. set up the rows of II are identical and then J(q) is merely the relative entropy H(qljr(1,.))

(see exercise 2.4.2).

Proof: Since Ml(E) is a closed subset of IRI : 1 its complement AIM1 (2)c is an open set. Further,

LX E Ml(E2), for any n and any realization X. Therefore, by the large deviations lower bound

(2.4.123)
1

-o = - log P ({L X E il(E)c}) > - inf I(q), (2.4.130)
n q0MI (E)

i.e., I(q) = cc for any q ¢ Ml(E).

Fix q E Mlll(E), u >> 0 and set Aj = log [iij (since u >> 0 and II is irreducible, it follows

that ulI >> 0). Observe that ulIx = u and thus p (IIx) = 1 by part (e) of the Perron-Frobenius

theorem (with Oki = ui > 0). Therefore,

I(q) > E qj log [ (uI) -log 1

Since u >> 0 is arbitrary this inequality implies that I(q) > J(q).
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To establish the reverse inequality, fix an arbitrary vector A E IRtlI and let a > p(IIx) be any

upper bound on p(IIx). Define

ij* = a- '(IIx)n(i,j)< oo j = 1,...,Irh , (2.4.131)
n=O i=l

where the finiteness of us is a direct consequence of part (e) of the Perron-Frobenius theorem.

Moreover, u'IIx = ca(u* - 1) (where 1 denotes the all ones vector) and u* >> 0. Thus, by the

definition of IIx,

Al +I(u'II)j E I (uIIx)j<X,q> + Z qj log - Zqj log

= qj log ulog = q log a + q log a (2.4.132)
j=1 l 7 j=1

U.

Thus, (< A,q > -log a) < Fj-= qj log ( .f. Take a I p(IIx) to deduce that

< A,q > -log p(I.\) < sup qj log = J(q) (2.4.133)
U>>0j_ 1 2 .(U.1)

and since A is arbitrary, also I(q) < J(q) and the proof is complete. Ca

Exercises:

2.4.2 Suppose 7r(i,j) = A(j), i,j E E where tu E All(E). Prove that then J(.) = H(./1u) (the

relative entropy with respect to ,u) while I(.) is the Fenchel-Legendre transform of the moment-

generating function A of (2.3.82). Thus, Theorem 2.4.3 is the natural extension of exercise 2.3.1

to the Markov set-up.

2.4.3 (a). Show that (2.4.129) holds for any non-negative irreducible matrix II (not necessarily

stochastic).

Hint: Let $(i) = Ej ir(i,j). Clearly, q >> 0, and thus the matrix H* given by, r*(i,j) =

2r(i,j)/O(i) is stochastic. Prove now that Jrj.(q) = JIr(q) + Ej qj log (j) for any q E IRIEl , and

likewise Irn.(q) = II(q) + E, qj log k(j) (where Jrj and InI denote the rate functions J and I

associated with the matrix II via (2.4.129) and (2.4.128) respectively).

(b). Show that for any irreducible, non-negative matrix II

logp(fl) = sup {-J(v)} (2.4.134)
vEMi (E)
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This characterization of the spectral radius of non-negative matrices is useful when looking for

tight bounds (for an alternative characterization see exercise 2.4.5).

2.4.3 Sanov's theorem for the pair empirical measure of Markov chains

The large deviations principle for the empirical measure of a Markov chain is still in the form of

an optimization problem. Moreover the nice interpretation in terms of entropy (recall Section 2.1.1

where the i.i.d. case is presented) has disappeared. It is interesting to note that by considering a

somewhat different random variable, from which the large deviations for LX may be recovered (see

exercise 2.4.4), one is also able to get a large deviations with a rate function which is an appropriate

relative entropy.

Consider the space E(2) - v x E, which corresponds to consecutive pairs of elements from

the sequence X. Note that by considering the pairs formed by X1,...,X,, i.e. the sequence

X1-X2 , X 2 X 3 , , XiXi+l, XXniX, one recovers a Markov chain with state space E(2) and

transition matrix II(2) specified via

(2)(k x ., i x j) = be(i) , (i,j) (2.4.135)

For simplicity assume throughout this section that II is strictly positive (i.e. 7r(i, j) > 0 for all i, j).

Then, II(2) is an irreducible transition matrix. and therefore the results of Section 2.4.2 may be

applied to find the large deviations rate function I(2)(q) associated with the pair empirical measures

n ,(2) (y)- by (Xi-l,Xi), yE E(2) (2.4.136)
i=1

Note that LX' (2) E Mi1(( 2)) and therefore f(2)(.) is a good, convex, rate function over this space.

The next theorem characterizes 1(2)(.) as an appropriate relative entropy. The following definitions

are needed for that purpose. For any q E Ml(E(2)), let q(i) P-,l q(i,j) be its marginal and when

q(i) > 0 let q(jli) L ()). A measure q E AI1 (v( 2)) is called shift invariant if q(i) = z-k1 q(k,i)q(i)

for all i (i.e., both marginals of q are identical).

Theorem 2.4.4 Assume II is strictly positive. Then for any q E M1 (Y( 2 )),

I(2 )(q) = J i q(i)H(q(.ji) I r(i, )), q shift invariant (2.4.137)
oo otherwise
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where H(.l.) is the relative entropy function ldefined in Section 2.1.1. Specifically,

q(jJi)
H(q(.li)l7r(i, ))= - q(jli) log . (2.4.138)

j-1

Remarks: When II is not strictly positive (but is irreducible) the theorem still applies with E(2)

replaced by Ern {(i,j): r(i,j) > 0}, and an almost identical proof. The above representation of

I( 2)(q) is useful for example in characterizing the spectral radius of non-negative matrices (see ex-

ercise 2.4.5) and in establishing the analog of Sanov's theorem for time weighted empirical measures

(see exercise 2.4.6). It is also useful because bounds on the relative entropy are readily available

and may be used to obtain bounds on the rate function.

Proof: By Theorem 2.4.3

IIl Isl
I(2 )(q) sup q(, j) log U(i,j)

u>>o j=l =l (uI(2))(i'j)

Itl IUi
sup E q(i, j) log (ij (2.4.139)

[z u(k, i)] (i, j)

where the last equality follows by (2.4.135).

Assume first that q is not shift invariant. Then, q(jo) < >k q(k, jO) for some jo. For u such

that u(.,j) = 1 when j 0 jo and u(., jo) = e,

?T q(i,j) log L - q ~ (i, j) log [ u(1,j) .
J=l i=l [k u(ki)] r(i,,j I= = I Uli)(ij)

IMI IEl E
=- Z Z q(i,j) log {Iljr(i,j)} + a q(i,jo) - q(jo) (2.4.140)

j=l i=l i=l

which implies, by considering a -. oo, that I(2 )(q) = oo.

Finally, when q is shift invariant then for any u >> 0

q(i,j) log [ k ( i)(j) ]= 0 (2.4.141)
i=l3 il Ek u(k,j)q(i)

Let u(ilj) = u(i,j)/ Ek u(k, j) and q(ilj) = q(i,j)/q(j), i.e., q(ilj) = q(i, j)/ Ek q(k, j) (since q is
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shift invariant). Now, by (2.4.139) and (2.4.141)

( 2(q) - q(i) H(q(. i)Ir(i, sup q(i,j) log u(i,j)q(i)
i=l u>>o i=l j=l

u(ilj)
= sup q(i,j) log = sup - q(j)H(q(.lj)lu(.Jj))U>>O = q( qlj) U>>0 - C 4(jH((r( ·lj~l·(·lj,) (2.4.142)qu>>o(ij) J=

Since H(q(-lj)lu(-lj)) > 0 it follows that I(2)(q) < 'i q(i) H(q(-li)lr(i,.)) with equality whenever

q >> 0 (by the choice u = q). The proof is complete for q which is not strictly positive by

considering a sequence u, >> 0 such that u, -- q ( so q(j)H(q(.Jj)lu,(.lj)) -, 0 for each j). El

Exercises:

2.4.4 Prove that for any strictly positive stochastic matrix II

J(v) = inf i(2)(q) (2.4.143)
(q :, q(i,')=v}

where J(.) is the rate function defined in (2.4.129) while I(2)(-) is as specified in (2.4.137).

Hint: There is no need to prove the above identity directly. Instead observe that the empirical

measure L X belongs to a set A iff L' (2) E {q(: i q(i, ) E A} (where the initial condition XY = x

is equivalent to any initial condition X--1X0 = (i.x) for the II(2) chain). As the projection of any

measure q E AI1(2( 2)) onto its marginal v E .;l(Y) is continuous and 1(2)(.) controls the large

deviations of L X '(2) deduce that the right side of (2.4.143) is a rate function governing the large

deviations of L X . Conclude by proving the uniqueness of such a function and applying Theorem

2.4.3.

2.4.5 (a). Extend the validity of the identity (2.4.143) to any irreducible non-negative matrix

II..

Hint: First extend Theorem 2.4.4 to any irreducible stochastic matrix II by replacing E(2) with Fn

(see the remark following the statement of this theorem). Then, for any irreducible, non-negative

matrix II consider II* defined in exercise 2.4.3 and verify that I((q) = I(2)(q) + Ei q(i)logq(i).

(b). Deduce by applying the identities (2.4.134) and (2.4.143) that for any non-negative irre-

ducible matrix II

-log p(II) = inf I(2)(q) = inf . q(i,j) log () (2.4.144)
qEMi(En) qEMI(En) shift invariant i= j=l (ij)
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This is Varadhan's characterization of the spectral radius of non-negative irreducible matrices

which is extremely useful for many applications.

2.4.6 Assume that XI,... ,Xn have the joint law PJ where II is an irreducible stochastic matrix.

Let Tl,...,Tn be a sequence of random variables over T - {1,2,..., } which are conditionally

independent given any realization {Xk}I=l while Prob(Tk = tjXkl = i) = p(i,t), i E a, t E T.

Construct the partial sums S, = ,=1 Tk and let KI be the stopping time where S, first hits or

exceeds the integer value n. The time weighted empirical measures LX ,T are defined via

LX'T(j) = -[ Tk6j(Xk) + (n- SKn-l)6j(XK,,) ]
k=1

(a). Suppose that p(i, e) > 0 for any i E E. Prove that L X T satisfies a large deviations principle

with rate function

!nt inf ): a~i)C )lq(j, t ii) }
.(v) a( i) lq(j tli) lo

At, i=' j=l t=l t

where

iIl e Ill e
A = {q(-li) E M 1(ZxT), a(i) > O: ' a(i) a q(j, tli) = a(j), a a(i) tq(j, tli) = v(j), Vj E E}

i=1 t=l i=1 t=l

Hint: Interpret the event {Tk = t} as if the Markov chain freezes in its current state Xk for t

time units and observe that L X T is merely the standard empirical measure in this new time scale.

Consider the Markov chain whose state space E x T consists of the original states and the future

time spans in which state changes are still forbidden (starting at the initial state (x, 1)). Show

that the transition from (i,s) to (j,t) in this chain has probability r(i,j)p(i,t) when s = 1 and

bi(j)6,_l(t) otherwise. Apply Theorem 2.4.4 to the pair empirical measure of this chain L X '(2).

Finally, observe that LXT(j) = Ei,,t tLX'(2)((i, S), (j, t)) for any j E E, and apply a "contraction

argument" of the type hinted about in exercise 2.4.4.

(b). Suppose that p(i,t) = p(t) and 7r(i,j) = jt(j). Prove that now the rate function for LXT is

JoA~ = in~f ~ H(qljl x p)
{q:Eq[T1 5,(XjS)]=(j)Eq[Tl], vj } Eq(T1)

where Eq(Ti) = ]jt tq(j,t) and q E Mf1(E x T).
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2.4.7 (a). Prove that

1 11 Is
- log PI (XI = 21, ... ,. = X , = x ) LX.(2 )(i, j)log (i, j)

i=I j=1

for any sequence x = (x 1 ,. .. ,x) e En of non-zero P, probability.

(b). Let

4=, {q : q = P(X ,...,Xn = Xn) > 0 for some x E En }

be the set of possible types of pairs of states of the Markov chain. Prove that En C Ml(Erl) and

InI <• (n + 1)ll2.

(c). Let T(q) be the type class of q E 4n, namely the set of sequences x of positive Pr probability

for which LX'( 2) = q and let H(q) = _i,j q(i,j)logq(jli). Suppose that for any q E En

(n + 1)-(l•12+lIl)en H ( q) < IT(q)l < enH(q) (2.4.145)

and moreover that

iEm dv(q,L,) = 0 Vq E Ml(SEn), q shift invariant. (2.4.146)

Prove by adapting the method of types of Section 2.1.1 that L X '(2) satisfies a large deviations

principle with the rate function f(2)(.) specified in (2.4.137).

Remark: The estimates (2.4.145) and (2.4.146) are consequences of a somewhat involved

combinatorial estimate of IT(q)l (see for example [18], eq. (35)-(37) and references therein)

2.5 Long rare segments in random walks

Let X 1,..., Xn,,... be i.i.d. random vectors in IRd with A(-) a steep function such that A(A) < co

for some open ball around the origin. Let A be any rare A* continuity subset of IRd, namely, such

that

IA - inf A'(x) = inf A'(x) > 0, (2.5.147)
xEA xEAO

where A*(x) is the Legendre transform of A(A) defined in (2.3.60).

Consider the random walk Sk = =l X, k = 1,2,- ., So = 0 and let

R(A) =max nm-k: 0 <k< <n , m EA (2.5.148)
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Thus, R (A) is the maximal length among all segments of the random walk up to n in which the

empirical mean is within the set A.

Associated with R (A) is the dual variable

T. _inf { m r k EA for some 0 < k < -r, (2.5.149)

so that {R ( A) > r} if and only if {T (A) < n}.

The analysis of the random variables RnA) and T (A) has applications in problems of the sta-

tistical analysis of DNA sequence matching and in the analysis of search algorithms in computer

science. The following Theorem yields estimates on rare events which are usually associated with

the probability of errors for matching algorithms. For some applications and refinements of these

estimates, c.f. [23] and the exercises at the end of this section.

Theorem 2.5.1 limn-,,(R(A)/ log n) = limr,--(r/ log T(A)) = 1/IA, almost surely.

Proof: By the Borel-Cantelli lemma and utilizing the duality of events {RnA) > r} {T(A) < n}

the theorem follows from the estimates

ZProb(TVI < er(I4A)) < o, YE> O (2.5.150)
r=1

00oo

Z Prob (T(A) > er(+) < c, V> 0 (2.5.151)
r=l

when IA < oo and from
oo

Prob (T(A) < er/) < > 0 (2.5.152)
r=-

when IA = oo.

The desired estimates (2.5.150), (2.5.151), and (2.5.152), are immediate consequences of the

bounds

Prob(T(A) > n) < e- LirJ A(A) (2.5.153)

and

Prob(T(A) < n) < n 1 ue(A), (2.5.154)
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coupled with Cramer's theorem (Theorem '2.3.2)

elim e log ,e(A) = -1A, (2.5.155)

where pe denotes the law of Se = t Se for e E Z+ and L[J denotes the largest integer which is

not larger than 2. Indeed, assuming (2.5.154), one has by substituting n.= ler(IA-)J that when

IA < oo

Z Prob(T(A) < e'r(A-f))< E er(IA~-0)E ce-'( 'A- 2) < c' E -r"/2 < 00
r=1 r=l e=r r=l

for some positive constants c, c'. When IA = oo one obtains (2.5.152) by choosing n = Ler/'I

in (2.5.154) and following the same line of proof. Similarly, starting with (2.5.153) and choosing

n = Le'r(A+f)J one obtains

ZProb(T(A) > er(1A+)) < Eexp -Cer(,A+)e-r(I4A+c/2)< exp) <rr·C (iie : Z exp(-c"ec') <
r=l r=1 r=l

for some positive constants c, c', c". We turn therefore to the proof of the bounds (2.5.153) and

(2.5.154). The bound (2.5.153) follows by the inclusion

({Tf) < n} D U Be, Be -(Ser -E~&-'>) E A 1 (2.5.156)

as it implies

Prob(TA) > n) < 1- Prob (IIU Be) = (1 - Prob(B 1))LrJ < e-l aProb(Bl) (2.5.157)

due to the fact that {Be}J°= are independent events related to disjoint segments of the random

walk, of equal probabilities Prob(Be) = 1Lr(A), e = 1,2,....

The bound (2.5.154) follows by the inclusion
n-r n n-I 00

{T) n} C Ck, C U U Ck,m, Ck,m - { k E A (2.5.158)
k=O m=k+r k=o m=k+r

and the union of events bound. Note that Prob (Ck,m) = /,m-k(A), and m-k > r while in (2.5.158),

there are at most n possible choices of k. CI

Remark: Note that Theorem 2.5.1 holds as long as (2.5.155) holds. For example, consider exercises

2.5.3 and 2.5.4.

Exercises:

62



2.5.1 Suppose that IA4 <.oo and (2.5.155) may be refined to

him aLr (Al)ld/ 2 erA] a

for some a E (0,oo) (such an example is presented in Section 2.10 for d = 1). Let

(A) A IA R- -logn d
- + -log log n 2

(a). Repeat the above calculations and prove that limsupnoo IPA)I <• 1 almost surely.

(b). Also deduce that limnoo Prob(Rf(A) < -e) = 0 for all E > 0.

2.5.2 Let A = {1} and X, be i.i.d. Bernoulli(p) random variables. Then, R(A) is the longest

consecutive run of 1-s in the binary sequence X 1,..., -. Let the renewal times Z 1,Z 2 ,... be

the locations of zeros in this sequence (with Zo - 0). Then, Qk Zk- Zk-_ - 1, k = 1,2,...

are i.i.d. Geometric(1 - p) random variables and R(A) = max{Q,.. .,Qk}. By standard renewal

theory -Z - l- as k - co, almost surely. Verify that here I. = - logp and deduce that

rim En (A4 R( ') - log n) = 0

almost surely, whenever lim _o En = 0.

2.5.3 (a). Consider a sequence X 1, ... ,X, of i.i.d. random variables over a finite alphabet E having

a marginal law u such that E, = E. Let Rr) be the longest among all segments of this sequence

with segmental empirical measures in the open set F C MI1(E). Assume that ju B F and derive

the analog of Theorem 2.5.1 for this situation.

(b). Assume further that r is convex. Let v' be the unique minimizer of H(.lp) in '. Prove that

as n - co the empirical measures associated with the segments contributing to Rr ) converge

almost surely to v'.

Hint: Let F 6 _r n yX,6 where B,.,6 is an open ball of radius 6 > 0 around v*. Prove that

limsupn--_° = < 1 almost surely, for any 6 > 0. Deduce that for any 6 > 0 the empirical

measures of the segments contributing to R(r ) are eventually within distance 6 of v* almost surely.

2.5.4 Assume that X1, ... ,¥Xn and Y1,...,Y are as in exercise 2.4.1. Specifically, Xk are the

states of a Markov chain over the finite set {1, 2,..., jl} with an irreducible transition matrix II,
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and the conditional law of Yk when Xk = j is tLj E -Ii(ld) while {Yk} are independent given any

realization of the Markov chain states. Further, suppose that the logarithmic moment generating

functions Aj associated with /j are finite everywhere and define the matrices Ax via

'x(i,j) - 7r(i,j) eA (' x )

Let A*(x) denote the Legendre transform of logp(IlI) and suppose A is a rare A* continuity

set. Let R (A) be the longest among all segments whose Y-segmental empirical mean belongs to

A C Rd. Prove that Theorem 2.5.1 holds with A* as defined here.

2.6 The Gibbs conditioning principle in finite alphabet

Let X 1, X 2, ... .Xn be a sequence of i.i.d. random variables with law y over the finite alphabet

E C IR' and assume without loss of generality that A, = E. The following question is of funda-

mental importance in statistical mechanics. Given a set A E IR and a constraint of the type Sn E A

what is the conditional law of Xl for large n ? In other words, what are the limit points of the

conditional probability vector

,L(ai) = Prob,(XI = ai Sn E A) i = 1,..J.,I (2.6.159)

as n W- oo (recall that S_ -IE;' =I X;3 = < Lx,a >). Note that for any function f: E - l]R1

< A;, f > = E[f(XI) I Sn E A] = E[f(X 2) I Sn E A]
i n

=E- f(Xj) I SnE A]=E[<Lx,f> <LX,a>E A] (2.6.160)

where we have used the fact that XYj are identically distributed (although not independent) even

under the conditioning Sn, E A. Therefore,

-; = E[LX I L X E r], (2.6.161)

where r A {u :< v,a >E A} (compare with (2.1.19) in Section 2.1.2). Therefore, the characteriza-

tion of possible limit points of the sequence ALn as n - oo can be cast in terms of conditional limits

for the empirical measures L X .
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The following characterization of the limits of /t1 is a consequence of Theorem 2.1.1 for any

non-empty set r which is an H(.jzL) continuity set, namely,

Ir inf HI(vY1) = inf H(vliz). (2.6.162)

Theorem 2.6.1 (Gibb's principle)

(a). The set of possible limit points of ylu is the closure of the convex hull of

;Mr - (v E 1: H(vll) = Ir} (2.6.163)

(b). For any convex set r of non-empty interior the set Mr is a point to which t~ converges as

n - oo.

Remark: For conditions on r (alternatively, on A) under which (2.6.162) holds see exercises

2.1.1-2.1.3 in Section 2.1.1.

Proof: As IE1 < o< , r is a compact set and thus Mtr is non-empty. Moreover, part (b) of the

theorem follows from part (a) by exercise 2.1.3 and the compactness of M l (E) (in that exercise you

showed that indeed (2.6.162) holds when F is a convex set of non-empty interior and that the set

Mr is a point).

We shall prove that for any 6 > 0

lim Prob(LX E I LX E F) = 1, (2.6.164)

with an exponential (in n) rate of convergence. where M-, {v : dv(v,M r) < 6}-

Since Mil(E) is a bounded set, (2.6.161) and (2.6.164) imply that for any 6 > 0, /A' eventually

belongs to the convex hull of M42r6. All points in the convex hull of jM6r are within variational

distance 6 of some point in the convex hull of 4Mr (since dv is a convex function on M 1(E) x M1(,)).

Thus, since 6 is arbitrarily small, limit points of /n are necessarily in the closure of the convex hull

of Mr as claimed.

The limit (2.6.164) definitely follows from

lim sup 1 log Prob,(LX E (M6)C I LX E F) =
n-oo n

lim sup { log Prob(LX E (t)c n r) - og Prob(LX E F) <0. (2.6.165)
n--*xoo n nJ
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However, by Theorem 2.1.1 and (2.6.162)

Ir = - lim - log Prob,(L X E F) (2.6.166)

whereas by Theorem 2.1.1 also

lim sup log Prob,(L X E (M )c n F) < - inf H(vl{u) . (2.6.167)
n-oo n vE(Mr)cnr

Observe that Mr are open sets and therefore (4r6 )c n F are compact sets. Thus, for some

V E(M6)c n

inf _ H(vzu) = H( IjL) > Ir , (2.6.168)
LIE(Mf5)cnr

where the above inequality follows from the definition of Mr since P 4 Mr while v E F. Finally,

(2.6.164) follows from (2.6.165)-(2.6.168). '

Remarks

(a). Intuitively one expects X 1,... Xk to be asymptotically independent (as n -- oo) for any

fixed k, when the conditioning event is {LX E 1}. This is indeed shown in exercise 2.6.3 by

considering "super-symbols" from the enlarged alphabet k.

(b). Theorem 2.6.1 holds for any set F satisfying (2.6.162). However, the particular conditioning

set {( :< v,a >E A} has an important significance in statistical mechanics because it

represents an energy-like constraint.

(c). Recall the relationship (2.1.23) of Section 2.1.2 which implies that for any non-empty, convex,

open set A C K the unique limit of pun is of the form

vx(ai) = e'ai-A(A) (ai)

for some appropriately chosen A E Il1 which is called the Gibbs parameter associated with

A. In particular, for any x E IK'0 the Gibbs parameter A associated with A = (x - 6, x + 6)

converges as 6 - 0 to A(z), the unique solution of the equation A'(A) = x (for details see

Section 2.1.2).

(d). A Gibbs conditioning principle holds beyond the i.i.d. case. Actually, all that is needed is

that Xi are exchangeable conditionally upon any given value of L X (so that (2.6.161) holds).

For such an example, consider exercise 2.6.2.
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Exercises:

2.6.1 Prove Theorem 2.6.1 by the method of types (specifically, use Lemma 2.1.4 directly).

2.6.2 Prove the Gibbs conditioning principle for sampling without replacement.

(a). Observe that again Xj are identically distributed even when LX is given. Conclude that

(2.6.161) holds.

(b). Assume that F is such that

Ir = inf £O,,(v)= infrIp,.(v)< o 00
I/Ero 'ET

and define Mr { r Iv,(v) = r}. Prove that now both parts of Theorem 2.6.1 hold (for

part (b) you may relay on exercise 2.1.12).

2.6.3 (a). Suppose that E = (E')k and / = (i'j)k are a k-th product alphabet and a k-th product

underlying measure on it and assume that -,, = V' (as usual). For any law v e A11(E) let

v(j) E Mi(E'), j = 1,...,k denote its j-th marginal on 2'. Prove that

H(vM t1) ' , H(vl() I ') ' H( Z( ')
j=1 j=1

with equality if and only if v = (V')k for some v' E Ml(E').

(b). Assume that

r - {v ,, v (j ) E r'} (2.6.169)
j=1

for some ' C MI1(E') which satisfies (2.6.162) with respect to t'. Prove that then lMr = (Mr,)k

and conclude that any limit point of /u is a k-th product of some appropriate law on 2'.

(c). Consider now the k-th joint conditional law

, I I I I iIfUl(atl,.-,ask)-=Probs;(Xl = X.¥k =a i
k | L E r') a'j E 2', j= 1,...,k,

where Xi are i.i.d. with marginal law A' E MAi(E') over the finite alphabet 2' and r' C M 1(E')

satisfies (2.6.162). Let p = (pI)k be the law of Yi = (Xl+k(i-l),. .. ,Xki) over a new alphabet C.

Prove that for any m E Z+

/mk(ai) = Prob.(YI =ai I L Y E r), V al E ,

67



where F is defined in (2.6.169). Deduce that as n -- oo along integer multiples of k the random

variables Xi, i = 1,..., k are asymptotically conditionally i.i.d (i.e., any limit point of /L* is a k-th

product of an element of M 1(E')).

(d). Prove that the above conclusion extends to n which need not be an integer multiple of k

whenever Mr, is a single point.

2.7 The hypothesis test problem

Consider the problem of hypothesis testing between two product measures for the i.i.d. random

variables Y1,'"n,Y,,- .. Specifically, Y3 are either distributed according to the law po E M 1(E)

(hypothesis Ho) or according to P1 E iA'l(S) (hypothesis H1). The alphabet E may in general be

quite arbitrary provided that the probability measures Mo and pl are well defined (Markov chains

over finite alphabet are considered in exercise 2.7.4).

Definition 2.7.1 A decision test S is a sequence of maps Sn .n -+ {0, 1}, for n = 1,2,. --, with

the interpretation that when Y1 = Yl, ... , Y = y, is observed then Ho is accepted (H 1 rejected) if

Sn(yl,..., y,) = 0 while H1 is accepted (Ho rejected) if Sn(yl,..., y,) = 1.

The performance of a decision test S is determined by the error probabilities

A a
a,= Prob,o(Ho rejected by Sn) , =, Prob,, (H1 rejected by Sn), n E Z+ . (2.7.170)

One wishes to minimize n,. If no constraint is put on a,, then one may have ,n = 0 with the test

Sn(yl,..., yn) - 1 at the cost of a,n = 1. Thus, a sensible criterion for optimality is to seek a test

which minimizes 3, subject to a constraint on an. Suppose now that the probability measures uo, /1

are known a-priori and that they are equivalent measures, so the likelihood ratios Lolll(y) = d~(y)

and Lll10(y) = ~d (y) exist (some extensions for yo, Pl which are not equivalent are given in exercise

2.7.3). This equivalence assumption is valid for example when MO, l1 are discrete measures with

Eoo = EA or when E = IRd and both 0O and , 1 possess strictly positive densities. In order to

avoid trivialities it is further assumed that tLo and JLu are distinguishable, i.e. that they differ on a

set whose probability under po (and pl) is positive.
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Let XYj log L 1110(Y)) = -log L0111(j) denote the observed log-likelihood ratios. These are

bona-fide i.i.d. random variables over IR1 which are non-zero with positive probability. Moreover,

70oa E,,[X] = E,,[Xle-X'],

exists (with possibly Yo = -oo) as xe-' < 1. Similarly,

X- EL[Xl] = E.o[XIe'X1] > Eo[Xi] = o,

exists (with possibly Y1 = oo) and the above inequality is strict since X1 is non-zero with positive

probability. Note that Yo and Z1 may be both characterized in terms of relative entropy, c.f. exercise

2.7.1.

Definition 2.7.2 A ,Veyman-Pearson test is a test in which for any n the mean observed log-

likelihood ratio S,, _ _ jn=l ¥j is compared against a threshold -, and HII1 is accepted (rejected)

when S,n > 'y, (Sn < ).

It is well known that Neyman-Pearson tests are optimal in the sense that there are neither tests

with the same value of ac, and a smaller value of On nor tests with the same value of ,n and a

smaller value of an (see for example [7] for a simple proof of this claim).

The exponential rates of an and in for Neyman-Pearson tests with constant thresholds

y E (7O,71) are thus of particular interest. These may be cast in terms of the large deviations

of Sn. In particular, since X, are i.i.d. real valued random variables, the following theorem is an

application of Theorem 2.2.1.

Theorem 2.7.1 For any Neyman-Pearson test with constant threshold 7 E (0o,71)

lim -logan = -aA(y) < 0, (2.7.171)
n-co n

and

lim log/n = ly - kA(r) < 0, (2.7.172)7n-.o n

where

A)(x) = sup {AX -Ao(A)} (2.7.173)
AE(0,1]

and A0(A) = log E,o [eAXx ] is the logarithmic moment generating function of X1 under Ho.
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Proof: Both (2.7.171) and (2.7.172) follow by slight modification of the proof of Theorem 2.2.1.

First note that

o0 = 1im A(A\) < - < lim A<(A) = l .xlt 0 ATl

Thus, a = A(i 7q) for some / E (0, 1) and A;y() indeed equals the Legendre transform of Ao at the

point y. Now by (2.2.46)

lim sup - logan = lim sup - log Prob,,0 (S e (7,oo)) < - inf A;(x) =-A(() (2.7.174)
n--bOo n n-boo nf x>-

where the last equality follows since A;(.) is nondecreasing on [y, oo) as 7 > 7o.

By the definition of Xj the logarithmic moment generating function associated with /l is merely

Ao(A + 1) and so the rate function AT(x) A;(x) - x governs the large deviations bounds for the

laws of Sn under H 1. Apply (2.2.46) once again to obtain

1 1
lim sup - logn,3 = limsup- log Prob,,m(S n E (-oo00,]) < - inf AT(x) = -Al(-?) (2.7.175)

n-oo n n--oo n <Y

where the last equality follows since A!(.) is nonincreasing on (-oo,7] as 7 < xl.

Since 7y = A(77) for some r/ E (0, 1) where A0 is a strictly convex, CO° function, both A;(.) and

AT(.) are continuous at the point y (consider further exercise 2.2.5 of Section 2.2). Moreover, for

large enough 7- the lower bound (2.2.51) applies to y, = 7 + _ and 6, = ! implying that
~~~~~71 r

liminf -logan > liminf log Prob,,(S3n E By,,s1 ) > -A;(yr) (2.7.176)
n-"*o 7n 'n-.oo 7

where By, 6 A= (y - 6, y + 6). By taking the limit r - oo and combining the above lower bound with

(2.7.174) one deduces (2.7.171). Similarly, one has for z, = 7 - 7 (with 6, = 1 and r large)

1 1
liminf- log1 n > liminf log Prob,,(Sn E Bz,s,) > -A;(z,) (2.7.177)

n--.oo 71 n-oo n

implying (2.7.172) in the limit r - oo. 1

Remarks: (a). Observe that Theorem 2.7.1 holds even when To = -oo or Z1 = oo or both. Its

proof is actually a specialization of exercise 2.2.7 from Section 2.2.

(b). A refinement of Theorem 2.7.1 is given in exercise 2.10.3 where the exact limiting behavior of

an (Pn) is derived.

A corollary of Theorem 2.7.1 is Chernoff's asymptotic bound on the best achievable Bayesian

probability of error

Pn( ) = Prob(Ho)an + Prob(H1/)3n (2.7.178)
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Corollary 2.7.1 (Chernoff's Bound) If 0 < Prob(Hl0) < 1 then

liminf{IlogP,(e)} =- (O) =- inf Ao(A) , (2.7.179)
~~~~~.n-oo n AE[0O,1]

where the above infimum is over all tests.

Remarks:

(a). In particular, Theorem 2.7.1 thus implies that the best Bayesian exponential error rate is

achieved by a Neyman-Pearson test with zero threshold.

(b). The rate AS(0) is called Chernoff's information of the measures yo and IlI.

Proof: It suffices to consider only Neyman-Pearson tests. Let a~c and 39, be the error probabilities

for the zero threshold Neyman-Pearson test. Then by (2.7.171) and (2.7.172)

lim -log a; = lim -log 31 = -A(0) (2.7.180)
n--oo n n n-oo nT

For any test either a, > a, (when %y, < 0), or /3, > 3 (when y7, > 0). Thus, for any test

1 1 i I
- log p(e) > log[min(Prob(Ho), Prob(Hi)}] + min( log a, n-log n }
n Ti nt 

As 0 < Prob(Ho) < 1, the limit n - co yields (2.7.179) in view of (2.7.180). 0

Another corollary of Theorem 2.7.1 is the following lemma which determines the best exponen-

tial rate for ,n when an are bounded away from 1.

Lemma 2.7.1 (Stein's Lemma) Let /3' be the minimum of in among all tests with a, < C.

Then, for any e < 1

lim -logo3 = o . (2.7.181)
n-c-, n

Proof: It clearly suffices to consider only Neyman-Pearson tests. Then,

an = Probg0 (Sn > Yn) . (2.7.182)

and

= Probin(S,n < n) = EAml,1n<,,n] = E,o[lj n<n e"] , (2.7.183)

where the last equality follows from the definition of Xj (as the observed log-likelihood ratios). The

identity (2.7.183) yields
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(a). Suppose first that 70 = -oo. Then. for ally Neyman-Pearson test with a fixed threshold y,

eventually a, < E by (2.7.171). Thus, - log ' < -y for any -y and n large enough by (2.7.184) and

(2.7.181) follows.

(b). Assume now that To > -oo. Similarly, apply (2.7.171) to deduce that eventually act < E for

Neyman-Pearson tests with a constant threshold y > 7o and so by (2.7.184)

lim sup 1 log /3, < Io + , (2.7.185)
n-oo n

for any 77> 0 and any E > 0.

Moreover, without loss of generality one may assume that

liminf Yn >_ o , (2.7.186)

for otherwise, by the weak law of large numbers lim supnoo an = 1. When (2.7.186) holds and

an < E then by (2.7.182) and the weak law of large numbers

liminf Prob, 0 (Sn E [io - 11, n]) > 1 - E for any r7 > 0 . (2.7.187)

Hence, by (2.7.183)

log On > 1 log Eo[1S ,E[Io_...llenSn]

> To - i7 +-log Probo(Sn E ([TO-7, rn]) · (217.188)

By combining (2.7.187), (2.7.188) and the optimality of these Neyman-Pearson tests one obtains

liminf -log/3O > to0- 77 for any 77> 0. (2.7.189)
Ln-O00 n

The desired limit (2.7.181) is now a direct consequence of (2.7.185) and (2.7.189). 0· -

Exercises:

2.7.1 Suppose that Y1,...,Y, are i.i.d. random variables over the finite set E = {ai,...,alIl}

and Eo = E,, = E (namely, [/o and yl are strictly positive over E).

(a). Prove that :1 = H(Allizo) < oo and To = -H(/oljl) > -oo (see Section 2.1 for the definition
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of relative entropy).

(b). For i1 E [0, 1] define the probability measures

A 1 (a)o j= 1,, I. l .

Let - = H(i,1l/Ao) - H(/z,7lil) and prove that A(?) = H(,7)lo).

2.7.2 Consider the scenario of exercise 2.7.1.

(a). Define the conditional probability vectors

t,1(aj) - Prob.o(Y1 = aj I Ho rejected by S") j = 1,..., ISA , (2.7.190)

where S is a Neyman-Pearson test with a fixed threshold 7 = H(,n7/ 1Lo) - H(/l71 1) and r7 e (0, 1).

Use Theorem 2.6.1 to deduce that /; - tt, as n - mo.

Hint: You may also find parts of the proof of Theorem 2.1.2 useful for solving this problem.

(b). Consider now the k-th joint conditional law

!;(a,,..., ajk) = Prob,,(Yl = aj . ... = ajki Ho rejected by S) aj, E e = 1,..., k.

Apply exercise 2.6.3 in order to deduce that

lim [nz(aj, ... , aj ) = ,((a5 l )~,( aj, ) ..(ajk )

Try to interpret this result.

2.7.3 Suppose that L 11lo(y) = -(Y) does not exist while Lolll(Y) = td(y) does exists. Prove

that Stein's lemma holds true whenever To - -EEo[logLolIl(Y1)] > -oo.

Hint: Split A1 into its singular part with respect to Lo and its restriction on the support of the

measure ko.

2.7.4 Suppose that Y1,...,Yn are the states of a Markov chain over the finite set = {1, 2,..., 1I}

where the initial state of the chain Yo is known a-priori to be some x E E. The transition matrix

under Ho is Iio while under H1 it is II1, both of which are irreducible matrices with the same

set of non-zero values. Here the Neyman-Pearson tests are based upon Xj A log 1o(Y-,YA) and

7i = E,,[X1] for i = 0, 1. Derive the analogs of Theorem 2.7.1 and Lemma 2.7.1 by using the

results of Section 2.4.3.
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2.8 Generalized maximum likelihood for finite alphabets

This section is devoted to yet another version of the hypothesis test problem presented in Section

2.7. In particular, the concept of decision test is as in definition 2.7.1 and the associated error

probabilities are as given in (2.7.170) there. While the law Ito is again assumed known a-priori,

here kl, the law of Yj under the hypothesis H1 is unknown. For that reason, neither the methods

nor the results of Section 2.7 apply. Moreoever, one has to modify the error criterion since requiring

uniformly small ,3n over a possibly large class of pi measures may be too strong (i.e., it may well

be that no test can satisfy such a condition). It is reasonable therefore to ask for a criterion which

involves asymptotic limits. For finite alphabets = {al,..., alEl} such a criterion was suggested

by Hoeffding, as follows.

Definition 2.8.1 A test S is optimal (for a given 77 > O) if, among all tests which satisfy

lim sup - log an < -7 (2.8.191)
n-oo n

the test S has maximal exponential rate of error. i.e. - lim sup{- log ,3n} is maximal (uniformly
n-oo n

over all possible laws pi).

As will become evident in Section ?? a considerable weakening of this criterion is necessary for

more general alphabets.

The following lemma states that it suffices to consider functions -of the empirical measure when

trying to construct an optimal test (i.e., the empirical measure is a sufficient statistic for this

problem).

Lemma 2.8.1 For any test S with error probabilities {(an, 3)n}=I there exists a test S with maps

of the form Sn(x) = S(LX, n) whose error probabilities {(n, , satisfy

1 1
lim sup - log & < lim sup - log ,an

nL-oo n - n-oo n

lim sup 1log n < lim sup - log , (2.8.192)
n-oo n n-oo n

Proof: For any n E Z+ let SO, A (Sn)1-(0) and Sn (Sn)- (1) denote the subsets of En which

the maps Sn assign to Ho and H1 respectively. For i = 0, 1 and any v E E,n let Si =n n n T(v)
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(recall that T(u) is the type class of v, see definition 2.1.2). Define

Sc,,,voherwise n(2.8.193)S(v,n) = { 0 if IS , > ½IT(v)(1 otherwise

where JAI denotes the cardinality of the set A. The test S specified in the lemma's statement is

composed of the maps Sn(x) = S(L x , n).

Recall that for any i.i.d. variables X = (XI,...,Xn) with marginal Jt E M 1(E) and for any

possible type v E ,n, the conditional measure Prob,(X I L X = v) is a uniform measure over the

type class T(v). In particular, if S(v, n) = 0 then

1 Prob.£(LX = v) = Prob.,,(X E Son). (2.8.194)
2 n J~ lT(v)l

Therefore

in = Z Prob,, (LX = v) <

{v:S(v,n)=O}nl,

2 {:S(,,,n)=o}n, Prob,, (X E So"') < 2Probl(X E Son) = 2 (2.8.195)

which certainly implies that

1 1
lim sup -log/ n < lim sup -log 3 (2.8.196)
n-oo n n--o n

A similar computation shows that &,n < 2a,, thus completing the proof. 0

Considering from here on tests which depend only on the empirical type L x , the following is a

characterization of an optimal rule.

Theorem 2.8.1 (Hoeffding) Let the test S' consist of the maps

0 if H(LxlJo) < r
Sn(x) = (2.8.197)

1 1 otherwise

Then S* is an optimal test.

Proof: By the upper bound of Theorem 2.1.1

limsup -logProb,,(Ho rejected by S') = limsup logProb,(LX E {E,: H(vJo) > A})
n-oo n n-oo n7

< - inf H(vljo) • -1 (2.8.198)
75:H(.luo)>r7}
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Therefore, S' obviously satisfies the constraint on a,. Let /3 denote the /, error probabilities

associated with the test S'. Then, by the same upper bound (see (2.1.12) in Section 2.1)

limsup log = limsup log Prob,, (LX E {v: H(vulo) < 71}) < - inf II(vIttl) -I,
n-oo n n--oo n - {:H(vlu0o)<, 7 }

(2.8.199)

where we have used the fact that for (2.1.12) to hold true, the set over which the minimization is

performed needs not be closed. When I,7 = oo then lim supn_ ,, log n = -oo is the best possible

exponential rate. Thus, it suffices to check the optimality of S* under laws l1 for which I, < oo.

Fix one such law pl. Clearly SE; n E,. is non-empty and moreover

r7 = ~ inf nS H(vl/yo) < 77 , (2.8.200)

as max{/H(vlio), H(vluI)} < oo only when C, C n f, . Furthermore, for any 77' > 7*r

17', , inf H(l'i/7) = inf H(vljj) < oo. (2.8.201)
({:H(vlo)<'7} { L:H(lIo )< <77 }nM1 (E o nE,; )

Let now S be any test determined by the binary function S(LX, n) on Al 1(E) x Z+ whose error

probabilities a, satisfy the constraint (2.8.191). Then, for any 6 > 0 and for all n > no(6) large

enough

,n n {v': H(v t0o) < rq-6} C , rn I {v: S(v, n) = 0}. (2.8.202)

For otherwise, there exists some 6 > 0 and a sequence of laws v, E E,n (for infinitely many values

of n), such that H(v/,jlo) < (rq - 6) while S(v, ,n) = 1. Then, by Lemma 2.1.4, for these values of

a, > Prob,,o(L X = v,) > (n + 1)- l-l e-nH(nIiA o ) > (n + 1)-lIle- n(7- 6 )

implying that

lim sup 1-log an, >-( /- )
n-oo n

and contradicting the constraint (2.8.191). Therefore, by combining (2.8.202) and the lower bound

of (2.1.16) one obtains for any 6 > 0

liminf log n > liminf log Prob, (LX E {v: H(vlio) < r - 6})
n''*oo n -- oo n 

> -limsup { inf H(vjjL)}- (2.8.203)
n--oo {EC,,: H(vjio)<,7 -6}
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Since for any k < co the set U==kLn n ,lll( ',, n E,;)) is a dense subset of MAl(E,0 n E,;) over

which both H(./uo) and H(-tbLI) are continuous functions. it follows by (2.8.201) that 17-6 = 17-5

as long as 77 - 6 > r77. Thus, one may deduce from (2.8.201) and (2.8.203) that

limsup log/3n > liminf -log 3, > - Uim I_,6 - lim I1,-s. (2.8.204)
n-oo n n--oo n 6--0 6-0

Finally, the optimality of the test S* for the law /p results by comparing (2.8.199) and (2.8.204)

provided that

lim I7_6 < Ir (2.8.205)
--- 0

In order to prove (2.8.205) define the measure

y Lo(a)/p1o(E,.,,)(a a) > 0
= I(aO)(sLi)/LO(v>) [;(as) > 0 (2.8.206)

0 otherwise

Note that H(it;Io) = -logto(W~,;) = I' (see exercise 2.8.1) and E,; = E,o n ,;. As

{v : H(v[,oO) < 71} is a non-empty compact set there exists a measure v' such that

H(v'ly7) < 1r7, H(v'lio) < v7

Consider now the family of measures v0 = Ott; + (1 - O)vz for 0 E (0, 1). Note that

ve E MIl(E,,o n E,;r) and v0 converges to v' pointwise as 9 -- 0 thus implying

lim H(veoll) = H(vllI7) < 1,- (2.8.207)
0-0

Moreover, as H(.ljo) is a convex function

H(veolo) • OH(+j;jIo)+ (1 - O)H(i'lyo) < O77' + (1 - 0)77

implying that for any S < 0(77 - rf*),

I,_s <_ H('l4u[) (2.8.208)

Thus, (2.8.205) follows by combining (2.8.207) and (2.8.208). 0

Remarks:

(a). The finiteness of the alphabet is essential here as (2.8.204) is obtained by applying the lower

bounds of Lemma 2.1.4 for individual types instead of the natural large deviations lower
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bound for open sets of types. Indeed. for non-finite alphabets a considerable weakening of

the optimality criterion is neccessary as there are no non-trivial lower bounds for individual

types (see Section ??).

(b). Both Lemma 2.8.1 and Theorem 2.8.1 may be extended to the hypothesis test problem for a

known joint law yo versus a family of unknown joint laws ip provided that the random

variables Xi,..., X,n are finitely exchangeable under 'o and any possible tin so that the

empirical measure is still a sufficient statistics. This is outlined in exercises 2.8.5-2.8.6.

Exercises:

2.8.1 Prove that for any v E MAl(Z), if v H /j then H(vlJio) > H(/oIJpo) = 77r.

2.8.2 Provide an alternative derivation of (2.8.202) based on the results of Section 2.7.

Hint: For any finite alphabet and any known law jpl, deduce from (2.7.171) and exercise 2.7.1

that all probability measures within £n which are of the form vo(ai) = cql(ai)°pIo(a)(l- '), where

0 E [0,1] is such that H(veol/o) < 71 should eventually satisfy S(vO, n) = 0. Then, apply the union

of probabilities bound and the volume estimate of Lemma 2.1.1.

2.8.3 (a). Let XYj for j X A be i.i.d. random variables over the finite alphabet Y = Eo

while X; for j E A are unknown deterministic points of E. Prove that the test S* of (2.8.197)

satisfies (2.8.191) for any deterministic increasing sequence of positive integers A for which

liMroo r = 00.

Hint: Let LX' corresponds to a = 0 and prove that lim sup_,, dv(LX, L X ' ) = 0 almost surely,

with some deterministic rate of convergence which depends only upon the sequence A. Conclude

the proof by the continuity of H(.lto) over Ml(E).

(b). Construct a counter example to the claim above when Eo 7H E.

2.8.4 Prove that under the assumptions of exercise 2.8.3 part (a), if in addition E,, = E for

any possible p1 law then the test S' of (2.8.197) is an optimal test. How far can you relax the

assumption that E., = Z for all A1 ?
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2.8.5 Suppose that for any n E Z + the random variables X(t) = (X 1,... ,X") over the finite

alphabet , have a known joint law /O under Ho and an unknown joint law /l under the alternative

H1. Suppose that for any n the variables X(n) are exchangeable under both /u and any possible

Ain (namely, the probability of any outcome X(n) = x is invariant under permutations of indices

in the vector x). Let L X denote the empirical measure (type) of X(n) and prove that Lemma

2.8.1 holds true in this case. (Note that the variables in X(") may well be dependent).

2.8.6 (a). Consider the scenario described in exercise 2.8.5. Suppose that In(v{l/o) = oo implies

on(Lx = v) = 0 and

lim sup I log pLo(L X = ) + In(-luo)l = . (2.8.209)n--oo ,E£n,In"(vlao)<oo n

Prove that the test S' of (2.8.197) with H(LXIlO) replaced by In(LXlIu) is weakly optimal in

the sense that - tim sup{- log/3n} is maximal (uniformly over all possible laws in) among all the
n-0oo n

tests for which lim supn, log a < im sup log 

(b). Apply part (a) to prove the weak optimality of thresholding Ia (L X ) of (2.1.25) when

testing a given deterministic composition sequence /1M in a sampling without replacement scheme

against any unknown composition sequence for such a scheme.

2.9 Rate distortion theory for stationary and ergodic sources

Throughout this section we are interested in analyzing the following situation:

be a stationary and ergodic source, with alphabet E, i.e. P is a stationary ergodic probability

measure on Q = vZ++ the space of semi-infinite sequences over E. Let xl, x 2 , .. X nn,... denote an

element of Q2, which we say was emitted by the source (X, P). Note that, since P is only ergodic,

the random variables (X1,., ,X,,..-) may well be dependent.

Next, let p(x, y) : x E [0, Pmax] be a one symbol bounded distortion function, i.e.

p(x, x) = 0, p(x, y) $ 0 for x f y and Pmax < oo. The. basic problem of source coding is to find a

sequence of deterministic maps (codes) Cn : n" -_ " of small distortion, where the distortion

of a sequence of codes {Cn},= is lim supn,,o Pc,, and

i=1
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is the average distortion per symbol when the code C, is used. The goal of the coding is to allow one

to transfer the information contained in sequences emitted by the source X with small distortion

per symbol, while transmitting as little information as possible.

Clearly, by taking C, to be the identity map, one obtains zero distortion but with no coding

gain. To get to a more meaningful situation, one would like to have a reduction in the number of

possible sequences when using C,,. Let C, also denotes the range of the map C, and IC,,l denotes

the cardinality of this set. The rate of the code C, is defined as

Rc,, = - log ICnl (2.9.211)

and the smaller RCn is, the larger is the coding gain when using C,. The main coding theorem,

due originally to Shannon, asserts that one cannot hope to get Rcn to be too small - that indeed,

under a bound on the distortion, RCn is bounded below in general by some positive quantity and

that there are codes which are arbitrarily close to this bound. The proof of this statement which

is presented here relays on the large deviations principle of Theorem 2.3.1.

The following definitions are required for the precise statement of the coding theorem.

The distortion associated with any probability measure Q on E x E is

pQ = p(x,y) dQ(x,y). (2.9.212)

Let Qx and Qy be the marginals of Q. Then the mutual information associated with Q is

H(QQx x Qy) log (dQx(QdQ Q, Y) )dQ(xy) (2.9.213)

when the above integral is well defined and finite and H(QlQx x Qy) = oo otherwise.'

The one symbol rate distortion function is defined as

Ri(D) = inf H(QIQx x Qy) (2.9.214)
{Q:pQ<D, Qx=P l}

where PI is the marginal on E of the stationary measure P on FZ+.

The one symbol distortion function p(x, y) implies the corresponding J-symbol average distor-

tion for J = 2, 3,...

P(j)((X1, *x*i*,), (Y1, ,YP(e, Ye) (2.9.215)
1=1

'In information theory books the mutual information is usually denoted by I(X; Y). The notation H(QIQx x Qy)

is more consistent with all other notations of this book.
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Thus, the J-symbol distortion associated with a probability measure Q on EJ x EJ is

(J)= p(J)(x,y) dQ(x, y) , (2.9.216)

and the mutual information associated with the measure Q having marginals Qx, Qy on E J is

H(QIQx x Qy) _ j log (dQx(x)dQy(y) )dQ(x,y) (2.9.217)

The J-symbol rate distortion function is therefore defined as

A 1
Rj(D) = inf -H(QIQx x Qy), (2.9.218)

{Q:P()<DQX=P} J

where Pj is the J-th marginal (on VJ ) of the stationary measure P. Finally, the rate distortion

function is

R(D) = inf RJ(D). (2.9.219)
J>1

The source coding theorem states that the rate distortion function is a tight lower bound on the

limiting rate RC¢ of a sequence of codes {Cn}n.=l with distortion D.

Theorem 2.9.1 (Source Coding Theorem)

(a). Direct Part: For any D > 0 such that R(D) < oc and any 6 > O, there exists a sequence of

codes {Cn}°°=1 with distortion at most D and rates RCe < R(D) + 6.

(b). Converse Part: For any sequence of codes {Cn}°°1= of distortion D and any 6 > 0

lim infn-.o RCn > R(D + 6).

Remark: Note that IEI may be infinite and there are no structural conditions on E besides the

requirement that P be based on EZ+ . On the other hand. whenever R(D) is finite, the resulting

codes always take values in some finite set and in particular, may be represented by finite binary

sequences. 

The proof of the Source Coding Theorem is presented via a sequence of lemmas with the large

deviations principle of Section 2.3 implying the first lemma which is key for the Direct Part of the

theorem.

Lemma 2.9.1 Suppose Q is any probability measure on E x E for which IQ - H(QIQx x Qy) < oo,

Qx _- P1 and pQ < PQxxQv (where PQxxQy is the distortion associated with Qx x Qy - P1 x
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Qy). Let Z,(x) = t_ p(xj, Y,) where Y i are independent random variables distributed over E

according to Qy. Then,

liminf log Prob(Z,(X) < pQ X) > -IQ almost surely'P (2.9.220)
--. oo n

where X is a random sequence of symbols emitted by the source X.

Proof: The inequality (2.9.220) follows from the lower bound of Theorem 2.3.1 for the open set

r = (-oo, pQ) and the random variables {Z,}.°=l Specifically, Theorem 2.3.1 is applied per

element of Q = Ez+, where the conditions of this theorem hold almost surely by the ergodicity of

P. To verify that, let An(8) - log E[esZn(X) XI and note that since p(., -) is a bounded function

nA,(0)l < oo for all 0 E IR and any realization of X. By Birckhoff's ergodic theorem [3]

A() =nlim 1 :X(n0) = lir - flogf] eOP(x'jY)dQy(y) (2.9.221)
n--ooa n-oo 1

exists almost surely P. Moreover.

A(0)=J log (J e9P(XY)dQy(y)) dP1(x) = J log (J e°P(xY)dQy(y)) dQx(x), (2.9.222)

does not depend on the specific sequence X emitted by the source (recall that Qx - P1 implying

the second equality above). Furthermore, since p(.,-) is uniformly bounded the function A(.) is

finite and differentiable everywhere (in IR'). Therefore, by Lemma 2.3.2, part (c) of Theorem 2.3.1

applies, yielding

liminf - logP(Zn(X) < pQIX) > - inf A'(x) -JQ almost surely P (2.9.223)
n 7o_ n .9<pQ

Recall that A'(x) A supx(Ax - A(A)). As A(0) = 0 (see (2.9.222)), A'(0) = PQxxQy (differentiate

(2.9.222) and compare with (2.9.212)) and A'(A) is monotonically nondecreasing (since p(.,.) > 0)

it follows that for x < pQ < A'(0)

sup(Ax - A(A)] < sup[,A'(0)- A(A)] _ < A'(A'(0)) = OA'(0)- A(0)= 0. (2.9.224)
A>O A>O

Since A*(x) > 0, it follows that for x < pQ

A'(x) = sup[Ax - A(A)] _> Al(pQ) (2.9.225)
.\<O
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and thus JQ = A'(pQ).

For any A E IR' define the probability measure Q\x on v x E via

dQx(x, y) A eX p(x,y)

dQx(z)dQy(y) fS eAP(x"z)dQy(z)

Since p(.,-) is a bounded function the measures Qx and Qx x Qy are equivalent and as

H(QIQx x Qy) < oo the relative entropy H(QIQA) is well defined. Moreover,

xr~i~p dQx(x, y)0 < H(QIQx) l J og dQ )dQ(x,y)=

= log { Q( y) X eAP(z)dQy(z)} dQ(x, y) = IQ-ApQ + A(AX2.9.226)
IxE X dQx(z)dQy(y) .

Since (2.9.226) holds for all A, it follows that IQ > A*(pQ). The proof is now completed in view of

(2.9.223) and (2.9.225). 0

The proof of the Direct Part of Theorem 2.9.1 is based on a random coding argument, where

instead of specifically constructing the codes C,, the classes C, of all codes of some fixed size are

considered. Let 5,, a Ec, [Pcn] be the average of Pc, over C,, where the distribution within the

class C, results by choosing the code C, at random according to some probability measure. For

any probability measure over C, there exists at least one code in Cn for which Pc, < ,n. In the

following lemma an upper bound on ;, is derived based on the large deviations lower bound of

Lemma 2.9.1.

Lemma 2.9.2 Suppose Q is a probability measure on E x E for which H(QIQx x Qy) < oo and

Qx P- P. Fix 6 > 0 arbitrarily small and let C,n be the class of all codes Cn of size ICl =

Len(H(QIQxxQY)+S)J. Then, there exist distributions on C, for which limsup,_.o ,n •< pQ.

Proof: Fix the probability measure Q and let IQ = H(QIQx x Qy).

(a). Suppose that PQxxQy < pQ (recall that PQxxQy is the distortion associated with the measure

Qx x Qy - P1 x Qy). Let Y 1,...,Y,~ be i.i.d according to the law Qy and Y (Y 1,..., Y,) be

a code-word of C, to which all En is mapped. Since IQ > 0 this construction is always possible

(ICl > 1) and it results with a class of codes C,, one code per realization of Y. The average

distortion over codes in C, is now

Tn y= E n E[p(,YjYi)IY] = xp(xy)dPI(x)dQy(y) = PQxxQy · (29.227)
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Thus, since Pn = PQxxQy < PQ the proof of the lemma is complete.

(b). Consider now the case when pQxxq > PQ, IQ < co and Qx - Pi. Let

k, = IC.I = Len('Q+s)J be as specified in the statement of the lemma and Y) j - 1 n,

i = 1,...,kn, be n x k, i.i.d. random variables of law Qy. The probability distribution on the

class of codes Cn is generated by considering the codes with code-words y(i) (y() y'(i)) for

i = 1,..., k,A. Per realization of these code-words the mapping C, is constructed as follows. For

any x E En define the set

Sn(x) {y P(xj,y) < PQ} (2.9.228)
j=1

and let C,(x) be any element of Cn n S,(x), where if this set is empty then C,(x) is arbitrarily

chosen. For this mapping,

1 p(xj, Cn(x)j) < pQ + PmaxlCnS,(x)=O

j=1

implying that

Pn < PQ + PmaxProb(Cn n Sn(X) = 0), (2.9.229)

where X E En is a random sequence of n symbols emitted by the source X and the set Cn consists

of the k, i.i.d. random vectors Y(i). Clearly,

Prob(Cn n Sn(X) = 0)= E[Prob(Y(i) ¢ S,(X) for all ilX)]

= E[(1- Prob(Y(') E Sn(X)IX))kn] < E(e-knPrOb(Y(')ESn(X)IX)]. (2.9.230)

By (2.9.229) and (2.9.230), limsupnoo < pQ provided that knProb(Y(') E S,(X)IX) -- co as

n - oo, in probability p. By the definition of kn it suffices to show that

liminf 1 logProb(Y(1) E S,(X)IX) > -IQ in Probability P, (2.9.231)
n-..o n

in order to complete the proof of the lemma. Since Lemma 2.9.1 applies to Z,(x) p(xj yj())

and {y(1) E Sn(x)} {Z(x) < pQ} the bound (2.9.231) follows. 0

The following weak version of the direct part of the Source Coding Theorem is an immediate

consequence of Lemma 2.9.2.

Lemma 2.9.3 For any D > 0 such that R1 (D) < cc and any 6 > 0 there exists a sequence of

codes {Cn}'n=l with distortion at most D and rates Rcn < R 1 (D) + 6.
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Proof: Since R1 (D) < oo there exists a sequence of measures {Q(m))}= 1 such that IQ(m,) - R 1 (D)

while pQ(m) < D and Q(m) Pi. By applying Lemma 2.9.2 for Q(m), m = 1,2,-.-, it follows that

limsupn..oo T < limsupm.,, pQ(m,) < D when C, is the class of all codes of size len(R1(D)+6)J and

6 > 0 is arbitrarily small. The existence of a sequence of codes C, of rates Rcn < R 1 (D) + 6 and

of distortion lim supn_, pcC _< D is deduced by extracting the codes Cn of minimal Pc,, from the

ensembles Cn. []

For i.i.d. source symbols, R(D) = R 1 (D) (see exercise 2.9.2) and the Direct Part of the Source

Coding Theorem amounts to Lemma 2.9.3. When the symbols are dependent one needs the fol-

lowing extension of Lemma 2.9.2.

Lemma 2.9.4 Suppose P is ergodic with respect to the J-th shift operation (namely, it is ergodic

in blocks of size J). Then, for any probability measure Q on E J x EJ with Qx - PJ and for any

6 > 0 there exists a sequence of codes C, of rates Re, < H(QIQx x Qy) + 6 and of distortion at
(J)most P(J)

Proof: Consider the enlarged alphabet EJ and regard each block of J consecutive symbols of the

emitted source sequence as one symbol from E J. A sketch of the proof which basically follows the

proofs of Lemmas 2.9.1 and 2.9.2 is presented here. Let

A(J)(0) = J log (J eJ6P( )('Y)dQy(y)) dPj(x). (2.9.232)

Then, by the ergodicity of P in blocks of size J

1
A(J)(0) = lim log E[e J°Z(IJ (X)iX] almost surely 7P, (2.9.233)

n-co nJ

where Z(J)(x) _ ! Cj p(J)(xj,Yj) and xl,x 2 ,...x, are concatenated symbols namely, are el-

ements of EJ (while Y 1, .. .Y are i.i.d. random variables of law Qy over EJ). Thus, Theorem

2.3.1 is once again applicable. To complete the proof, define Qx now via

dQA(x, y) A eJAX(J) (x,y)

dQx(x)dQy(y) fr., eJAP(3)(x,z)dQy(z) '

and observe that for any A E IR' and any probability measure Q over EJ x EJ with Qx PJ

0 < 1H(QIQA) = H(QIQx x Qy)- Ap( + A(J)(A) .
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Thus, I'tJ(QIQx x QY) > (J)(P(J)). [

The following corollary is an immediate consequence of Lemma 2.9.4 (by adapting the proof of

Lemma 2.9.3 to J f 1).

Corollary 2.9.1 If P is ergodic in blocks of size J for any J E Z + then the direct part of the

Source Coding Theorem holds.

While in general, an ergodic P might be non ergodic in blocks, Corollary 2.9.1 holds true for any

stationary and ergodic P (see for example [2], pp. 278-280, [13], pp. 496-500). It clearly suffices

for that purpose to prove the following lemma.

Lemma 2.9.5 Lemma 2.9.4 holds true for any stationary and ergodic P and any J E Z + .

Proof: It is possible to show that when considering blocks of size J, the emitted infinite sequences of

the source may almost surely be divided into J equally probable ergodic modes, Eo,..., EJ-1, such

that if sequence (xl, ,-, Xn,.-.) belongs to mode Ei then (l+k, X2+k, ''n.. +k,...) belongs to

the mode E(i+k)modJ (see [2],[13]). This implies that P = FJ--o1 p(i) where {P(i)}J-o are ergodic

in blocks of size J and correspond to the ergodic modes Ei. By projections onto these ergodic modes,

each law Q on E J x E J with Qx - PJ is similarly decomposed into Q = - J--o1 Q(i) such that

Qj) = p7() is the J-th marginal of p(i) while () =J / - P(Ji) and
(i) (i) Q J i=O Q()

J-1
H(QlQx x Qy) > _1 H(Q()IQ() x Q(?). (2.9.234)

i=0

By applying Lemma 2.9.4 for {Q(i)}fJ=0 there exist J sequences of codes C(), i = 0,..., J- 1

with rates RC) < H(Q()IlQI() x Q()) + 6 and distortions at most Q(J) with respect to the source

measures {P(i)}J-ol , respectively. A sequence of codes C+l) of rates
meor=rea (p O 1n+1)J of rates

J-1
Rc(n+,)J < J R ( + ) log J (2.9.235)

and of distortion at most p(J) with respect to P is now constructed as follows. The code C(+x)J is

the union of J codes {C(n+ l)}J i=o, each of cardinality IIJ-o1 IC()l and length (n + 1)J. The code

C,(i)+J consists of all the distinct words in
(n+l)J
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((yo, a', Y 1, a..., YJi-1, a') k E Cn(i+ k)modJ .k = 0... ., J -1 } and a* E E is a fixed separator

symbol. This construction guarantees tlat the sequence of codes C(i+) has distortion at most(n+1)J

p(J) with respect to the source measure p(i) and thus Cn+l)J has at most this distortion with

respect to the source measure P. By (2.9.234) and (2.9.235) for all n large enough, RC ,+)j <

JH(QIQx x Qy) + 256. Finally, for code length which is not an integer multiple of J, one may

easily modify the code C(n+l)J of closest length while neither affecting the limiting distortion per

symbol nor the limiting rate (as n -* oo). The proof is thus complete. O

The last lemma in this section is devoted to the converse part of the Source Coding Theorem,

whose proof is based on information theoretical arguments and not on large deviations bounds.

Lemma 2.9.6 For any sequence of codes {Cn}n__=l of distortion D and for any 6 > 0

liminfo,, Rcn > R(D + 6).

Proof: It suffices to consider codes Cn of finite rates and of distortion D. Such a code Cn is a

mapping from En to E 'n. When its domain E' is equipped with the probability measure Pn (the

n-th marginal of the source measure P), Cn induces a (degenerate) joint measure Q(n) on En x En .

Note that Q("() - p, and pQ(n) = pcn < D + 6 for all n large enough (and any 6 > 0). Therefore,

H(Q(n)IQ?() x Q(n)) > nRn(D + 6) > nR(D + 6) for any 6 > 0 and any n large enough. Since the

marginals Q(n) have the finite support sets C,

nRc, = log [ICn > H(Q)) -

N= (compare.with thewhere the entropy H(Qy( ) ) is defined as H(Qy)) !C-nll Q (y)l(comparewith the

definition in Section 2.1.1). Let fn((x, i) dQ(n) (_y) .y) Then, f,: rn x "n - [0,oo) is welldQ (n, ()dQ n,( ,)-

defined, fn, fn(x, Yi) dQ)() = 1 for all i as well as Cil fn(X, Yi) ()(yi) = 1 almost surely

Q(n) Thus, f,(x, yi) Q (n)(yi) 1 almost surely Q(n) and

H(Q ()) - H(Q( )IQ(X) x Q()) = c QI( (y)|( ) 1og fn(x, yi) dQ(n)
i=l ?y )

= dQil fn(ZYi)QY y) log ) (2.9.236)

Therefore,

lim inf RCn > lim inf 1H(Q (n) > lim inf 1H(Q(n)IQ(n) x Qn)) > R(D + 6).
-- oo00 n-"oo n f--oo -O l
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Exercises:

2.9.1 (a). Prove that when E is a finite set and R1 (D) > 0, there exists a probability measure

Q on E x Z for which IQ = R 1(D), Qx = P1 and pQ = D.

(b). Prove that for this measure also IV(pQ) = IQ.

2.9.2 Prove that when P is a product measure (namely, the emitted symbols X 1, X, X2, , X, are

i.i.d.) then Rj(D) = R 1(D) for all J E Z + .

2.9.3 (a). Show that (m + n)Rm+,(D) < mRi(D) + nR,(D) for any two integers m, n.

(b). Conclude that if lim supjo Rj(D) < oo then R(D) = limj_,,o Rj(D).

emphasize in intr. that deal with iid case. correctiuons are denoted

2.10 Refinements of large deviations statements in IRd

Cramer's theorem deals with the tails of the empirical means S,. On a finer scale, at least in the i.i.d.

case, the random variables /Sn possess a limiting Normal distribution by the classical Central

Limit Theorem. In this situation, the empirical means n,3n satisfy a large deviations principle for

any 3 E (0, -), but always with a quadratic (Normal-like) rate function. This statement is made

precise in the following theorem.

Theorem 2.10.1 Let X1, ... X, be a sequence of ltd valued i.i.d. random variables with E(Xi) =

0 such that Ax(A) i log E[e<)" X'>] < oo in some open ball Bo,6 around the origin. Fix: 3 E (0, 2)

and let Z,n z , - 3 =l, Xi = n/S,n. Then, Z, satisfy a large deviations principle in IRd governed

by the good rate function

Ig(x) < , CZ > , (2.10.237)

where C is the covariance matrix of Xi. Moreover, any open or closed set G is an 'g continuity

set.
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Proof: This theorem follows from the general large deviations statement of Section 2.3 with a, -

n(2 P-'). Indeed, in the notations of Section 2.3

An(anl A) logE (e a 'l <A\ Z" >

= Z log E (end <>I.,>) = n log E (e n <AXl>) (2.10.238)
i=l

Therefore

A(A)= limn n2 ' log E (en- <,>XI>) (2.10.239)

Note that n - , 0 and therefore, by our assumption that A(A) < oo in an open ball around 0,
n-Boo

for each A E IRd there exists an no large enough such that for all n > no, E (en- <A\,X>) < cO,

and by dominated convergence

E (en - < [\ 'x >) = 1 + n - E[< A, X 1 >] + 1 n-2 E[< A, X 1 >2 + O (n - 3 0) (2.10.240)

Substituing (2.10.240) into (2.10.239) one obtains (using the identity E[< A,X 1 >] = 0)

A(A) = lim n2
0log {1 + n-2E[< A, X1 >2] + O(n-33)}

1 1 2
E[< A,X 1 >2] = < A,CA >2 (2.10.241)

2 2

Thus,

a 1 1
A'(x) sup { < A,x > -A(A)} = sup { < A,x > - < A, CA >} = < , C > = 19(2)

AERd A ERd 2 2
(2.10.242)

Since A'(A) = ½ < A, CA > is differentiable and finite everywhere Theorem 2.3.1 applies and the

proof is thus complete. a

Remarks:

(a). Note that Theorem 2.10.1 is nothing more than what one would obtain from a naive Taylor

expansion applied on the anastaz Prob(Sn = x) . e- nl(' ) where I(.) is the rate function of Theorem

2.3.2 (see Section 2.3).

(b). The rate of convergence in (2.10.241) is of O(n-P), suggesting a similar convergence rate for

a, log Prob(Zn E G) (which converges to - infeEG Ig(x) for any open G). Indeed, such a result is

proved in [121 (pp. 552-553) for d = 1 and G = (x, oo). This extends for example the validity of
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the Normal approximation for the distribution of v/Sn to intervals of o(n6) (which correspond to

3 > 3 here).

(c). A similar result may be obtained in the context of Markov additive processes (see Section

2.4.1).

Another refinement of Cramer's theorem involves a more accurate estimate of the laws j,n of S,

(the empirical means of i.i.d. random variables). Specifically, for a "nice" I Continuity Set A one

seeks an estimate Jn of ,cn(A) such that lim,_,, Jp,,(A) = 1. Such an estimate is an improvement

over the normalized logarithmic limit 1 logtni,(A) implied by a large deviations principle. The

following theorem deals with the estimate Jn f6r certain half intervals A = [q, oo) C RK1.

Theorem 2.10.2 (Bahadur and Rao) Let tAn denotes the law of Sn = - ,-=1 Xi where Xi are

i.i.d. real valued random variables and A(A) = log E[eAX, ] is the logarithmic moment generating

function of Xi. Consider the set A = [q, oo) where q E .F, namely q = A'(r/) for some positive

71 E DOA

(a). If the law of X1 is non-lattice, then

lim J,,nn(A) = 1 (2.10.243)

where Jn = 77/l/l"(, ) 2,rTn enA'(q)

(b). Suppose X1 has a lattice law, namely, for some finite xo, d, the random variable '(X 1 - xo)

is with probability one an integer value. Assume further that 1 > Prob (X1 = q) > 0 (in particular,

this implies that (q - xo) is an integer and that A"(ri) > 0). Then,

d dlim J,,n(A) = d (2.10.244)
n--~00 1 - e- r i d

Remarks: (a). Recall that A'(q) = qq- A(,r) and A(.) is C °o in some open neighborhood of 71 by

the dominated convergence argument (for details see Lemma 2.2.1 and exercise 2.2.5).

(b). Actually the limit relations (2.10.243) and (2.10.244) remain valid even for small intervals of

size of O(1°-on) (see exercise 2.10.1).

(c). The proof of this theorem is based on an exponential translation of a local Central Limit

Theorem. This approach is applicable for the dependent case of Section 2.3 and to certain extent

applies also in IRd, d > 1.
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Proof: (a). Consider the probability measure fi defined by dfi(x) A en-lA(?)dlz(x) and let Y =

(Xi-q)/V '), for i = 1,2,..., n. Note that Yl,..., Yn are i.i.d. random variables with EA[Y 1] = 0

and E,[Y1
2] = 1 (this can be easily checked by computing the first two moments of X 1 under f).

Let F,(x) denotes the distribution function of Wtn = 1 J =l Yi under the measure f.

Since Xi are non-lattice, the Berry-Esseen expansion of Fn(x) results with:

lim {/;; sup Fn(x)- (- ) - m3 (1- x2) (x)}= 0, (2.10.245)

where m 3 E-[Y13 ] < co, q(x) = ;1 exp(-x2/2) is the standard Normal density, and

(zx) = f-oo b(rf7)d77 (for the derivation of (2.10.245) see [12] page 512).

Now,

,n (A) = /Ln([q, Co)) = Ea [e-n'l7n -At(7)]ls>] =

e- A'(q)E [e-" 'ThWn" lv, >o] = e -nA(q)j e-7A"()dFn() (2.10.246)

sq A" Aet Wn.since Sn = q+ S W. Let in A 7 7(). By an integration by parts in (2.10.246) one

obtains

Jnn(A) =/27J ine n[Fn(X) -Fn(0)] dx = i7 ne- t [Fn () )-Fn(O)] dt

(2.10.247)

Consider now

A V/' [ ne- t ) + -- - (0)m3- dt (2.10.248)

Comparing (2.10.247) and (2.10.248), observe that the Berry-Esseen expansion (2.10.245) yields

the relation limn,_ IJJn(A) - c,l = 0. Moreoever, since

sup 14'(X)1 < o, lim jI'(x)l = 0 · (2.10.249)
r>O z-o

it follows by a Taylor expansion of · (--) and the dominated convergence theorem that

lim cn = lim vi27 oet [4 ( -) (0)] dtn-oo n-oo 0 On

lim /- eto ( dt = v7(o) | - ' dt = 1. (2.10.250)
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This completes the proof for the non-lattice case.

(b). In the lattice case (where the range of Yi is ) the Berry-Esseen expansion

(2.10.245) is modified to

rlim fjsup |Fn(x)() - )--1 (l - x) (x) - O(x)g ( d) i} 0 (2.10.251)

where g(z,h) = h - (x mod h) if (x mod h) : 0 and g(z,h) = h if (x mod h) = 0 (see [12],

page 513 or [22], page 171, Theorem 6). Thus, by adopting the argument above for the lattice case,

one obtains

-V/- p,)00 r t t 77d dt (2.10.252)/
Urm Jn/S,(A) = 1 + irn V ,ne- t ? g -(O)g o ) dt (2.10.252)

n-oo noo 1V5 Vn On

Since Ong (Vt, i) = g(t, 7d) it follows that

lim Jtn=(A) = 1 + lim V/J e k t g(t, rd) -o(0)g(0, 7id) dt
n-'-OO n-- OOn

1 + 'v/- 6(0) e- [g(t, rd) - g(O, rd)] dt. (2.10.253)

The proof is completed by combining (2.10.253) with

-t c' -nT71d d rid-O e[g(t, id) - g(O,-d)] dt= Z en7d et(77d - t) dt= 1-7d 1. (2.10.254)

Exercises:

2.10.1 (a). Let A = [q, q+ ), where in the lattice case a is restricted to be an integer. Prove that

for any a E (0, oo), both (2.10.243) and (2.10.244) hold with J, = r77iA (r7)27rn enA '(q) 1-e

(b). As a consequence of part (a) above conclude that for any set A = [q,q+bn) both (2.10.243)

and (2.10.244) hold for Jn as given in Theoren 2.10.2 as long as limn,,_ nbn = oo.

2.10.2 (a). Let r > 0 denote the minimizer of A(A) and suppose that A(A) < oo in some open

interval around 77. Based on exercise 2.10.1, deduce that the limiting distribution of Sn conditional

upon Sn > 0 is Exponential(,r) when X1 has a non-lattice distribution.

(b). Suppose now that X1 has a lattice distribution of span d and 1 > Prob(X1 = 0) > 0.

Deduce now that the limiting distribution of -Sn conditional upon Sn > 0 is Geometric(p) with

p = 1- e- ri d (i.e., Prob(S, = kdS, > 0) -- pqk for k = 0, 1,2, ).
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2.10.3 Consider a Neyman-Pearson test with constant threshold y E (To,71) (see Section 2.7

for details). Suppose that X 1 = log dt (Y l ) has a non-lattice distribution. Let A. E (0, 1) be the

unique solution of Ab(A) = ?. Deduce from (2.10.243) that

n-oo {nenA()A A"()27rn} = 1 (2.10.255)

and

} (2.10.256)
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Chapter 3

Historical notes and references

Although much of the credit for the modern theory of large deviations and its various applications

must go to Donsker and Varadhan, the topic is much older and references to the various aspects

of it may be traced back to the early 1900's. Due to our own ignorance we will necessarily confine

ourselves here to an incomplete list of references and historical credits. We hope to expand and

correct this list at a later stage, and apologize to those who are not given due credit.

3.1 Chapter 2

The early development of large deviation bounds did not follow the order of our presentation.

Statisticians, starting with Khinchin [18], have anaylsed various forms of Cramer's theorem for

special random variables. See [27], [20] and [21] for additional references on this early work.

The first statement of Cramer's Theorem for distributions on R possessing densities is due

to Cramer [7], who introduced the change of measure argument to this context. An extension to

general distributions was done by Chernoff [6], who introduced the upper bound which was to carry

his name. There exists a large body of literature concerning the applications of Cramer's theorem

to the analysis of statistical tests, on which we keep silent.

Although Stirling's formula, which is at the heart of the combinatorial estimates of section 2.1,

dates back at least to the 19-th century, the notion of types and bounds of the form of Lemmas

2.1.1-2.1.4 had to wait until information theorists discovered that they are useful tools for analyzing

94



the efficiency of codes. For early references we refer the reader to the excellent book of Gallager

[12]. Our treatment of the source coding theorem in section 2.9 is a combination of the method of

that book with the particular case treated by Bucklew in [4].

The credit for the extension of Cramer's theorem to the dependent case should definitely go to

Ga.rtner [14] who considered the case in which DA = IRd . Ellis [10] extended this result to the steep

set up and the formulation of section 2.3 is nothing but an embellishment of his results.

The large deviations statements for Markov chains have a long history which is partially de-

scribed in the historical notes of Chapter ??. The approach taken here is based in part on the ideas

of Ellis [10].

The material in section 2.5 is a large deviations proof of the results in [22].

Gibb's conditioning principle has served as a driving force behind Ruelle and Landford's treat-

ment of large deviations (without calling it by that name), [24], [25], [19]. The form of the Gibb's

principle here was proved using large deviations methods (via the method of types) by Campenhout

and Cover [5] and in greater generality by Csizar [8] and Stroock-Zeitouni [28].

No references yet for Stein's lemma.

The generalized maximum likelihood of section 2.8 was considered by Hoeffding [16], whose

approach we basically follow-here. The extension to general state space presented in section ?? is

due to Zeitouni and Gutman [30].

Finally, the refinements of the large deviations principles discussed in sections 2.10 and ??

follow [1], [21], although some of the methods are much older and may be found in Feller's book

[11].
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